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Abstract
The recent development of general quantum resource theories has given a 
sound basis for the quantification of useful quantum effects. Nevertheless, 
the evaluation of a resource measure can be highly non-trivial, involving an 
optimisation that is often intractable analytically or intensive numerically. 
In this paper, we describe a general framework that provides quantitative 
lower bounds to any resource quantifier that satisfies the essential property of 
monotonicity under the corresponding set of free operations. Our framework 
relies on projecting all quantum states onto a restricted subset using a fixed 
resource non-increasing operation. The resources of the resultant family can 
then be evaluated using a simplified optimisation, with the result providing 
lower bounds on the resource contents of any state. This approach also 
reduces the experimental overhead, requiring only the relevant statistics of the 
restricted family of states. We illustrate the application of our framework by 
focusing on the resource of multiqubit entanglement and outline applications 
to other quantum resources.

Keywords: quantum resource theories, entanglement, robustness

(Some figures may appear in colour only in the online journal)

1.  Introduction

Quantum resource theories provide a rigorous structure to characterise the resources present 
in quantum systems [1–5]. Such resources arise whenever there is a restriction imposed on 
the available operations that an agent can perform on the quantum system, identifying a set of 
free operations O which form a subset of the completely positive and trace preserving linear 
maps [6]. The restriction also identifies a set of free states F , forming the largest subset of the 
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set D(H) of quantum states for which any pair of states can be reversibly converted using free 
operations alone. Any non-free state is hence a resource state, since one must always input 
resource in the form of a non-free operation to create such a state from a free state.

The restricted agent based approach [7] to characterising quantum resources has already 
been particularly fruitful for understanding quantum entanglement [8, 9], where the restriction 
is given by the paradigm of local operations and classical communication (LOCC) between 
spatially separated parties [8, 10, 11]. In fact, entanglement theory can act as a progenitor 
for modelling more general resource theories. For example, the many-copy interconversion 
between resource states using free operations, first understood for entanglement theory, leads 
to the general concept of resource distillation and cost [10, 12–16]. The development of gen-
eral quantum resource theories has led to further understanding of the resources of quantum 
coherence [17–19], quantum correlations [20–28] and other nonclassical properties [29–38].

An important question is to consider how much resource is present in a given state. The free 
operations allow for a qualitative characterisation: a state ρ is more resourceful than another 
state σ if there exists a free operation Λ ∈ O so that σ = Λ(ρ), meaning that the state σ can 
be prepared from ρ without consuming any resource. Such a characterisation can result in a 
complicated multibranch hierarchy [39, 40], where it can be difficult to identify necessary and 
sufficient conditions for interconvertibility between two resource states [6, 41–45].

However, quantum resource theories also provide the structure to quantitatively measure 
the resource content of a state [5, 9, 18, 20, 46]. Here, the complicated multibranch hierarchy 
can be condensed into a single quantitative ordering that preserves the hierarchy within each 
branch. Since there is not a unique way to impose a quantitative ordering, there is no unique 
measure of the resources present in a quantum system. Although this may appear counterin-
tuitive, one may reconcile the non-uniqueness of resource measures from an operational per-
spective: we expect to exploit our quantum resource for a variety of different tasks, for which 
each task may value certain resource states over others and hence impose a different ordering.

Any bona fide measure R of a quantum resource must have compatibility with the corre
sponding quantum resource theory by satisfying two universal requirements. First, it must 
hold that R(ρ) � 0 for all ρ ∈ D(H) and R(ρ) = 0 for all ρ ∈ F , i.e. that a resource measure 
is in general non-negative and always zero when there is no resource. Second, it must hold 
that R(Λ(ρ)) � R(ρ) for all ρ ∈ D(H) and Λ ∈ O. This requirement is known as resource 
monotonicity, and imposes that resource measures should preserve the hierarchy within each 
branch. Additional properties may also be considered for a given resource, such as strong 
monotonicity [8] or convexity whenever F  is convex (see e.g. [9, 46] for comprehensive 
accounts of the requirements for measures of entanglement).

When a bona fide resource measure is selected, one is then presented with the task of 
evaluating the measure for arbitrary states. This task is typically intractable analytically and 
difficult numerically, often resulting in strong restrictions on the applicability of the resource 
measure. For example, consider the non-trivial optimisations given by the distance-based 
resource measures

RDδ(ρ) := inf
σ∈F

Dδ(ρ,σ),� (1)

where Dδ is a contractive distance on the set of quantum states [9, 47, 48], as well as by the 
(generalised) resource robustness [5, 49–53]

RR(ρ) := inf
τ∈D(H)

{
s � 0

∣∣∣∣
ρ+ sτ
1 + s

=: σ ∈ F
}

,� (2)

which quantifies the resilience of a resource state ρ against mixing.
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In this paper, we construct a general framework to calculate simplified lower bounds to 
bona fide resource measures. We begin in section 2 by introducing two of the foundational 
concepts for our framework: the resource non-increasing projections and the corresponding 
resource guarantor states, both of which can have wider relevance to quantum resource theory. 
In section 3, we detail the four main steps of our framework. Our approach is not restricted to 
specific types of resource, since it relies on general concepts using the structure of resource 
theories. Nevertheless, to verify the usability of our framework, we provide example applica-
tions in section 4, focusing in particular on the resource of multiqubit entanglement. Here we 
first provide a method for constructing entanglement non-increasing projections and identify-
ing their corresponding entanglement guarantor states. By using this construction we define 
a new family of entanglement guarantor states complementing those highlighed in [54], and 
proceed to evaluate the robustness of multiqubit entanglement on these states, which can in 
turn be used to lower bound the robustness of the GHZ state. Finally, we conclude and discuss 
our findings in section 5.

2.  Resource non-increasing projections and resource guarantor states

We now introduce the two main foundations of our framework. A quantum operation Π that 
satisfies the composition relation Π2 = Π is referred to as a projection1. We define the resource 
non-increasing projections (RNIPs) to be the subset of projections that are also free. Every 
such Π ∈ O identifies a corresponding set of resource guarantor states (RGSs) G  given by all 
the states left invariant by Π, i.e.

G = {ρ ∈ D(H) | Π(ρ) = ρ} .� (3)

It can then be seen that the action of Π on the set of quantum states D(H) is to project every 
state onto the set of resource guarantor states, so that

Π(ρ) ∈ G ∀ ρ ∈ D(H),
Π(ρ) = ρ ∀ ρ ∈ G.� (4)

Hence, for every ρ ∈ D(H) there is a corresponding RGS Π(ρ) ∈ G. Now, for any bona 
fide measure of a resource R we know that

R(Π(ρ)) � R(ρ),� (5)

which holds since R satisfies the resource monotonicity requirement. It can therefore be seen 
that the state Π(ρ) ∈ G provides a quantitative guarantee on the resources of ρ ∈ D(H) in 
terms of a lower bound. Figure 1 illustrates the action of RNIPs and the corresponding set of 
RGSs. We remark that there is generally a many-to-one correspondence between a general 
state ρ ∈ D(H) and the corresponding RGS Π(ρ) ∈ G. Furthermore, RNIPs present a gener-
alisation of the resource destroying maps introduced in [35], which are an extremal form of 
RNIPs that destroy all resource, as their RGSs are free states.

In general, since Π ∈ O, we know that the action of Π on the set of free states σ ∈ F  is to 
map it to a subset FG of free RGSs, i.e. the intersection between F  and G . We have that

FG = {Π(ρ) | ρ ∈ F} ⊂ F .� (6)

We see in the following that our framework allows for a simplification in the evaluation of 
resource measures by replacing optimisation over all free states F  with an optimisation over 
the free RGSs FG ⊂ F , which are typically simpler to characterise.

1 Here we restrict to quantum operations that preserve the dimension of the quantum system.
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3.  Framework

We now specify the general framework for providing lower bounds to bona fide resource mea-
sures for arbitrary quantum states. Our framework consists of four steps.

	Step one:	� identify an RNIP Π and characterise the corresponding set of RGSs G .
	Step two:	� characterise the set FG of free RGSs.
	Step three: � evaluate R(�) for all � ∈ G.
	Step four:	� optimise the lower bound R(Π(U(ρ))) � R(ρ) over free unitaries U ∈ O.

Each step is now explained in detail. An illustration of the framework is provided in  
figure 2 and an example of its application to the resource of multiqubit entanglement can be 
found in section 4.

The first step is to identify an RNIP and characterise the corresponding RGSs. This step 
requires attention to two objectives: on the one hand it is desirable for the RGSs and free RGSs 
to be simple to characterise, so that R(�) can be evaluated for any � ∈ G. On the other hand, 
one does not want to pick an RNIP that destroys a lot of resource, as the resultant lower bound 
in equation (5) becomes less informative. Indeed, it is possible for Π(ρ) ∈ FG even if ρ /∈ F , 
so that the corresponding lower bound is trivial. This is seen in the extreme for the resource 
destroying maps [35], for which Π(ρ) ∈ FG for all ρ ∈ D(H).

The second step consists of characterising the set FG of free RGSs, i.e. the intersection 
between F  and G . This can be achieved using equation (6), which tells us that FG is simply 
the result of applying the chosen RNIP onto the set of free states F .

In the third step of the framework, we evaluate a chosen resource measure R(�) on the 
set of RGSs, i.e. for all � ∈ G. Typically, the evaluation of R(�) for � ∈ G is much more 
affordable than the evaluation of R(ρ) for ρ ∈ D(H), since one can employ a number of tricks 
to simplify the optimisation. For example, consider the distance-based resource measures in 
equation (1). It can be seen that for any � ∈ G

Figure 1.  The action of a resource non-increasing projection (RNIP) Π, which satisfies 
Π2 = Π ∈ O, is to project the set of states D(H) onto the set of resource guarantor 
states (RGSs) G  (dashed orange ellipse). Any state ρ ∈ D(H) has a corresponding 
RGS Π(ρ) ∈ G (orange circle), with a many-to-one correspondence between general 
states and RGSs (dotted orange area). The intersection between free states F  (solid 
blue ellipse) and RGSs G  is the set of free RGSs FG, so that every free state σ ∈ F  is 
transformed into a corresponding free RGS Π(σ) ∈ FG.

T R Bromley et alJ. Phys. A: Math. Theor. 51 (2018) 325303
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RDδ(�) = inf
σ∈F

Dδ(�,σ)

= inf
σ∈F

Dδ(Π(�),Π(σ))

= inf
σ∈FG

Dδ(�,σ),

� (7)

where in the second equality we use the contractivity of the distance Dδ under any quantum 
operation, while in the third equality use equation (6) and the fact that Π(�) = �. This equa-
tion means that the distance-based resources of � ∈ G are given simply by the distance to the 
free RGSs.

Alternatively, consider the resource robustness in equation (2). Whenever we consider an 

RGS � ∈ G, for every mixture �+sτ
1+s ∈ F  with τ ∈ D(H), there is a corresponding mixture 

�+sΠ(τ)
1+s ∈ FG. Hence, it holds that

RR(�) = inf
τ∈G

{
s � 0

∣∣∣∣
� + sτ
1 + s

=: σ ∈ FG

}
,� (8)

so that one needs only to consider mixtures of ϖ with other RGSs to obtain a free RGS. We 
note that equation (8) is a convex optimisation problem whenever G  and FG are convex sets, 
and that equation (8) may be evaluated as the solution of a semidefinite program [52, 55] if 
G  and FG can additionally be characterised with a finite number of linear matrix inequalities. 
This can be the case even when equation (2) cannot be posed as the solution to a semidefinite 
program, as we see for the example in section 4 of multiqubit entanglement.

The final step of our framework is to provide a lower bound to the resource degree of any 
state ρ ∈ D(H), according to equation (5), by considering the corresponding RGS Π(ρ) ∈ G. 
However, this lower bound may be optimised over free unitaries: the unitary transformations 

Figure 2.  A zoom-in onto the set G  of RGSs illustrates the four steps of our framework. 
The first two steps consist of fixing an RNIP Π and finding the sets of RNGs G  (dashed 
orange ellipse) and free RNGs FG (given by the intersection with the solid blue ellipse). 
In the third step, we use the characterisations of G  and FG to evaluate a chosen resource 
measure R(�) for any RGS � ∈ G (illustrated here for the distance-based measures 
in equation  (7)). Finally, the fourth step involves considering the optimised lower 
bound maxU R(Π(U(ρ))) � R(ρ) over all free unitary operations U ∈ O, with the set 
Π(U(ρ)) ∈ G of RGSs illustrated by the orange ellipse.

T R Bromley et alJ. Phys. A: Math. Theor. 51 (2018) 325303
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U(ρ) := UρU† with UU† = U†U = I such that U ∈ O. Indeed, it is straightforward to see 
that R(ρ) = R(U(ρ)) for any monotonic resource measure, so that

R(Π(U(ρ))) � R(U(ρ)) = R(ρ).� (9)

Evaluating the maximum of the left hand side of the above equation  over all free unitary 
operations U ∈ O hence provides an optimised lower bound to the resource contents of 
ρ ∈ D(H). Nevertheless, the set of free unitaries may not always be fully characterised for a 
given resource, while optimisation over the free unitaries can be computationally intensive. 
It can thus be more realistic to optimise over a well characterised subset of free unitaries. As 
we see in the following, the free unitaries of multiqubit entanglement are local qubit unitaries. 
Performing an optimisation over the SU(2) group is often simple to solve, with some cases 
amenable to evaluation as the result of a semidefinite program.

These four steps compose the main structure of our framework. Whilst step one and step 
four have already been employed for the resource of entanglement [56–59], our primary 
contribution here is formalising the framework for general resources, as well as highlighting 
the simplifications possible in evaluating resource measures by restricting to what we have 
defined as RGSs, see equations (7) and (8).

It is also important to comment on the experimental applicability of our result. One approach 
to quantify the resource of a state prepared in the laboratory is to perform a full state tomogra-
phy [6, 60, 61], requiring an exponential number of measurement settings (with respect to sys-
tem dimension) in the worst-case scenario, although a less intensive overhead can be achieved 
by restricting to low rank states [62]. Alternatively, one can reconstruct the corresponding RGS, 
which may require much fewer measurement settings to achieve. For example, in the following 
section we discuss a family of RGSs that are experimentally accessible using only three local 
measurement settings. Moreover, the optimisation over free unitaries U ∈ O in the fourth step 
of our framework can be attempted experimentally whenever partial prior knowledge of the 
target state is available, as is the case in most scenarios. Here, one performs a change of basis 
before the measurement according to the optimal free unitary of the target state.

4.  Applications of the framework

The framework naturally lends itself to the characterisation of a variety of quantum resources. 
We first briefly discuss some very natural example applications for thermodynamics and 
quantum coherence, before proceeding to give a detailed example of applying our framework 
to multiqubit entanglement.

Our first example, the resource theory of thermodynamics (or athermality) [15, 30], identi-
fies a unique free state—the thermal state of a given Hamiltonian H at a fixed temperature—
and the free operations as those which can be implemented by attaching a thermal ancilla 
and applying a unitary operation which commutes with the total Hamiltonian of the system. 
Here, one can consider as a resource non-increasing projection the completely dephasing map 
∆H(·) =

∑
i |Ei〉〈Ei| · |Ei〉〈Ei| where {|Ei〉} is the eigenbasis of H. This greatly simplifies the 

evaluation of resource measures, since the resultant states are simply classical probability dis-
tributions, and indeed the problem of computing distance-based resource measures reduces to 
optimising distances between probability distributions. Such projections have already found 
use in the description of operational tasks in this resource theory [15, 63, 64].

Another example is quantum coherence, which captures the existence of a quantum sys-
tem in a superposition of states with respect to a given reference basis, and has relevance 
in fundamental information processing tasks, metrology, and quantum biology, as well as 

T R Bromley et alJ. Phys. A: Math. Theor. 51 (2018) 325303
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being a crucial ingredient for the creation of entanglement [18]. The coherence-free states, 
or incoherent states, can be identified as diagonal when represented in the reference basis 
{|i〉}, while the free operations can be identified as incoherent operations [17]. Any projective 
measurement on subspaces spanned by vectors of the reference basis, representing a decoher-
ing map which zeroes some off-diagonal elements of the density matrix, is then a resource 
non-increasing projection. Identifying particular instances of this type of projection will then 
provide varying lower bounds for coherent states. Another type of an RNIP which has been 
employed in the resource theory of coherence is an operation reducing all two-qubit states to 
so-called M3

N  states [65], which we will also encounter in section 4.3.
We now provide a more in-depth analysis of the application of our framework to the 

resource theory of multiqubit entanglement—a fundamental resource of paramount impor-
tance in quantum information [8], although quantitatively very difficult to characterise. We 
begin by outlining the background details of multiqubit entanglement and then proceed to 
discuss a general method to construct entanglement non-increasing projections and find their 
corresponding entanglement guarantor states. This construction is used to identify the EGN  
states, which we then use within our framework.

4.1.  Resource theory of multiqubit entanglement

Within the quantum resource theory of multiqubit entanglement, there exists a hierarchy of 
free states referred to as M -separable states, with 2 � M � N . These states can be written as 
convex combinations of product states, each of which is factorised with respect to any (pos-
sibly different) partition of the N qubits into M subsystems, i.e.

ς =
∑

i

pi|ψ(1)
i 〉〈ψ(1)

i | ⊗ |ψ(2)
i 〉〈ψ(2)

i | ⊗ · · · ⊗ |ψ(M)
i 〉〈ψ(M)

i |,� (10)

where |ψ(α)
i 〉 is any pure state of the αth subsystem of the M-partition corresponding to the 

ith term (we stress that the M-partition is allowed to vary for different values of i). The hier-
archy of M-separable states stands as follows: M-separability implies M′-separability for any 
M′ < M , whereas M-inseparability implies M′-inseparability for any M′ > M . For example, 
when considering the two extremes of this hierarchy, we have that N-separability implies any 
other form of M-separability, and is thus called full separability, whereas 2-inseparability 
implies any other form of M-inseparability, and is thus called genuine multiqubit entangle-
ment or full inseparability.

The free operations are instead given by the single-qubit LOCC, whereby only operations 
that are local on each of the N qubits are permitted, along with classical communication [66]. 
An important instance of single-qubit LOCC is a convex combination of single-qubit local 
unitaries, whose action on a state ρ is given by

∑
i

pi U(1)
i ⊗ U(2)

i ⊗ . . .⊗ U(N)
i ρ U(1)†

i ⊗ U(2)†
i ⊗ . . .⊗ U(N)†

i .� (11)

It requires only one-way communication and can be physically achieved by allowing one of 

the qubit parties, e.g. the αth one, to randomly select a local unitary U(α)
i  by using the prob-

ability distribution {pi} and then to communicate the result to all the other parties.
Having identified the free states and free operations, we can define a bona fide measure 

EM of M-inseparable multiqubit entanglement to be any function satisfying the requirements 
discussed in section 1. In particular, the distance-based measures EDδ

M  are specified by equa-
tion (1) and the entanglement robustness is specified by equation (2).

T R Bromley et alJ. Phys. A: Math. Theor. 51 (2018) 325303
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4.2.  Constructing entanglement non-increasing projections

We now introduce a systematic way to build multiqubit entanglement non-increasing pro-
jections (ENIPs) and, as a consequence, the corresponding entanglement guarantor states 
(EGSs). First of all, let us give a shorthand notation for the Bloch representation of a generic 
N-qubit state ρ in the computational basis {|0〉, |1〉}⊗N:

ρ =
1

2N

∑
α∈IN

Tρ
αPα,� (12)

where the set IN = {0, 1, 2, 3}N  contains all the N-tuples α = (α1,α2, · · · ,αN) of indices 
ranging from 0 to 3, Pα = σα1 ⊗ σα2 ⊗ · · · ⊗ σαN , with σ0 = I being the 2 × 2 identity 
matrix and σ1,σ2,σ3 the Pauli matrices, and Tρ

α = Tr(ρPα) are the so-called correlation ten-
sor elements of ρ. The single-qubit (Hermitian) local unitaries Pα satisfy several properties 
that will be extremely useful in the following, see appendix A for further details.

Now we provide a systematic way to project, via single-qubit LOCC, an arbitrary state ρ 
onto an EGS of the following form:

�ρ =
1

2N

∑
α∈G

Tρ
αPα,� (13)

for some instances of G ⊂ IN. This ENIP consists of putting equal to zero all the correlation 
tensor elements Tρ

α of ρ such that α /∈ G and leaving alone the remaining ones. The number of 
surviving correlation tensor elements Tρ

α is given by the cardinality |G| of the set G. One may 
pick G so that |G| is small, leading to a reduction in the complexity of evaluating the multiqubit 
entanglement of �ρ as well as a decreased overhead in the number of local measurement set-
tings required to recover �ρ in laboratory. However, |G| can be large and still tractable, e.g. for 
the entanglement robustness whenever �ρ and the corresponding free states can be described 
with a finite number of linear matrix inequalities.

One approach to performing the above ENIP is to apply to ρ the following convex com-
bination of single-qubit local unitaries (which is a single-qubit LOCC as we have previously 
mentioned):

ΠG(ρ) :=
1

|JG|
∑
α∈JG

P′
αρP′†

α,� (14)

where JG ⊂ IN  is defined in such a way that
{
[Pα, P′

β] = 0 ∀α ∈ G, β ∈ JG,
∃β ∈ JG : {Pα, P′

β} = 0 ∀α /∈ G.� (15)

This ENIP is successful, i.e. so that ΠG(ρ) can always be written as in equation (13), provided 
that the matrices P′

β for which β ∈ JG form a set that can be written as

{P′
βi
}2n

i=1 =




I⊗N

{Pαi1
}n

i1=1

{Pαi2
Pαi1

}n
i2>i1=1

· · ·
{Pαin

. . .Pαi2
Pαi1

}n
in>...>i2>i1=1




,� (16)

for some family of matrices {Pαi}n
i=1.

T R Bromley et alJ. Phys. A: Math. Theor. 51 (2018) 325303
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Indeed, by using the properties discussed in appendix A, one can easily see that

ΠG(ρ) = �ρ,� (17)

where �ρ is defined in equation (13). This is due to the fact that for any α ∈ IN

Tr(ΠG(ρ)Pα) =
1

|JG|
∑
β∈JG

Tr(P′
βρP′†

βPα)

=
1

|JG|
∑
β∈JG

Tr(ρP′†
βPαP′

β)

=
1

|JG|


 ∑

β∈J+G (α)

Tr(ρPαP′†
βP′

β)−
∑

β∈J−G (α)

Tr(ρPαP′†
βP′

β)




=
1

|JG|
(|J+G (α)| − |J−G (α)|)Tr(ρPα)

=

(
2
|J+G (α)|
|JG|

− 1
)

Tr(ρPα)

=

{
Tr(ρPα) if α ∈ G,
0 otherwise,

�

(18)

where the first and second lines are due to the linearity and cyclicity of the trace, respectively, the 
third line is due to the fact that JG = J+G (α) ∪ J−G (α), with J+G (α) := {β ∈ JG : [P′

β, Pα] = 0} 
and J−G (α) := {β ∈ JG : {P′

β, Pα} = 0}, the fourth line is due to P′†
βP′

β = P2
β = I, the 

fifth line is due to |JG| = |J+G (α)|+ |J−G (α)|, and finally the sixth line is due to the fact that 
|J+G (α)| = |JG| when α ∈ G while |J+G (α)| = |JG|/2 otherwise, which in turn is due to equa-
tion (15) and the assumption that the matrices P′

β for which β ∈ JG form a set of the form 
given in equation (16) for some family of matrices {Pαi}n

i=1.
An alternative implementation of the above described ENIP can be realised by resorting to 

the following sequential approach. We begin by considering the n single-qubit local unitaries 
{Pαi}n

i=1. Then, we fix a sequence of states {ρi}n
i=0 defined recursively by

ρi :=
1
2
(
ρi−1 + Pαi−1ρi−1Pαi−1

)
,� (19)

for i ∈ {1, 2, . . . n}. This can be achieved physically in each step by having one of the qubit 
parties flip a coin and classically communicate the result to all the other qubits, with the result 
of the flip deciding whether the single-qubit local unitary Pαi−1

 is applied or not. Then, by 
setting ρ0 = ρ we can easily see that

ΠG(ρ) = ρn =
1
2n

2n∑
i=1

P′
βi
ρP′†

βi
,� (20)

where the matrices P′
βi

 are defined in equation (16).
We show in the following a particular realisation of this method for constructing an ENIP 

for any number of qubits N, and hence see how it can be used as a tool within our framework. 
The identification of alternative ENIPs may proceed by first fixing N and choosing a G ⊂ IN, 
perhaps based on experimental or physical considerations. One then searches for a family of 
matrices {Pαi}n

i=1 so that equations (15) and (16) hold. If such a family can be found, then the 

resultant matrices {P′
βi
}2n

i=1 in equation (16) define a JG that can be used to construct the ENIP 
according to equation (14). Generally, identifying a valid G and JG can be a difficult task. 
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Nevertheless, it is a process that can be easily automated for small numbers of qubits, where 
the quantification of multiqubit entanglement still remains an open and relevant problem.

4.3.  Applying the framework

We are now ready to apply the four-step framework introduced in section 3 to the resource the-
ory of multiqubit entanglement. One realisation of this framework has already been achieved 
in [54] by considering a fixed ENIP with corresponding EGSs given by the so-called M3

N  
states ω = (I⊗N +

∑3
i=1 ciσ

⊗N
i )/2N  (N-qubit mixed states with all maximally mixed margin-

als), with the ci ∈ R constrained so that ω is positive semidefinite. In the following we will 
introduce another realisation of our framework based on the so-called EGN  states. As we 
shall see, the EGN  states allow us to derive lower bounds on multiqubit entanglement that 
are complementary to those provided by the M3

N  states. The steps of our framework for EGN  
states are now explained.

	Step one: �identify an ENIP and characterise the corresponding set of EGSs.

		 In this step we can use the previously discussed method to construct ENIPs and find the 
corresponding EGSs. By resorting to the following 2(N − 1) local unitaries

{Pαi}
2(N−1)
i=1 = {(σ3 ⊗ σ3 ⊗ I⊗N−2), (I⊗ σ3 ⊗ σ3 ⊗ I⊗N−3),

. . . (I⊗N−3 ⊗ σ3 ⊗ σ3 ⊗ I), (I⊗N−2 ⊗ σ3 ⊗ σ3)

, (σ2 ⊗ σ2 ⊗ I⊗N−2), (I⊗ σ2 ⊗ σ2 ⊗ I⊗N−3),

. . . (I⊗N−3 ⊗ σ2 ⊗ σ2 ⊗ I), (I⊗N−2 ⊗ I⊗ σ2)},

� (21)

		 when N � 3 and to

{Pαi}2
i=1 = {(σ3 ⊗ σ3), (I⊗ σ2)}� (22)

		 when N  =  2, as well as to the recursive procedure introduced in equation (20), we iden-
tify an ENIP and obtain the family of N-qubit EGSs whose matrix representation in the 
computational basis is given by:

� =
1

2N

(
I⊗N + d1σ

⊗N−1
1 ⊗ σ2 + d2σ

⊗N
2 + d3σ

⊗N−1
3 ⊗ I

)
,� (23)

		 where d1 = Tr
[
�(σ⊗N−1

1 ⊗ σ2)
]
, d2 = Tr

[
�σ⊗N

2

]
, and d3 = Tr

[
�(σ⊗N−1

3 ⊗ I)
]
. These 

states will be referred to as EGN  states and will be denoted in the following also by the 
triple {d1, d2, d3}.

		 The characterisation of the EGN  states is manifestly different between the odd and even 
N case. In the {d1, d2, d3}-space, the set of EGN  states with odd N  >  1 is represented 
by the tetrahedron T(−1)(N−1)/2 with vertices {1,(−1)(N−1)/2,1}, {−1, −  (−1)(N−1)/2,1},  
{1, −  (−1)(N−1)/2, −  1} and {−1,(−1)(N−1)/2, −  1}, see figure 3. This tetrahedron is con-
structed simply by imposing the non-negativity of the four unique eigenvalues of ϖ, see 
appendix B. Similarly, for even N the set of EGN  states is given in the {d1, d2, d3}-space 
by the unit ball B1 centred into the origin.

	Step two: �characterise the set of free EGSs.
		 We now discuss the set SEGN

M  of M-separable EGN  states for any 2 � M � N . This set can 
be characterised as the result of applying the fixed ENIP specified in equations (20)–(22) 
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onto the general set of M-separable states given in equation  (10), see appendix C for 
further details. We see that when M > �N/2�+ 1 the M-separable EGN  states are such 
that |d1|+ |d2|+ |d3| � 1 and thus fill the set represented in the {d1, d2, d3}-space by the 
unit octahedron O1 with vertices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}, as illustrated in 
figure 3. On the other hand, when M � �N/2�+ 1 all the EGN  states are M-separable.

	Step three: �evaluate EM(�) for all � ∈ EGN .
		 It is immediate to see that EM(�) = 0  for all � ∈ EGN  whenever M � �N/2�+ 1. 

Therefore, one cannot use the EGN  states to provide non-trivial lower bounds on multi-
qubit entanglement for such M. We instead focus on the cases M > �N/2�+ 1, where the 
M-separable states always form the unit octahedron as a strict subset of all EGN  states.

		 Let us first consider the distance-based measures of M-inseparable multiqubit entangle-
ment, where equation (7) shows that we simply need to find the minimal distance from ϖ 
to the set of EGN  states inside the unit octahedron O1. In the odd N  >  1 case, since all the 
EGN  states are diagonal in the same basis (appendix B), we have that distances between 
them reduce to the corresponding classical distance between the probability distributions 
formed by their eigenvalues. What is more, since the eigenvalues of the EGN  states with 
odd N  >  1 are equivalent to the eigenvalues of the M3

N  states with even N, it happens 
that the ensuing optimisation problem of classical information geometry has already been 
solved in [54]. The result is that, for any choice of distance, the closest M-separable EGN  
state to ϖ is on the nearest surface of the unit octahedron, with the location specified by 
the intersection with the extended line connecting ϖ to its corresponding nearest vertex, 
see figure 3. Any bona fide distance-based measure can then be calculated as a mono-

tonically increasing function of the height h� = 1
2

(∑3
j=1 |dj| − 1

)
∈ [− 1

2 , 1] above the 

separable plane (with a negative value indicating that ϖ is in the unit octahedron and 
hence M-separable).

		 On the other hand, for even N, the closest M-separable state to ϖ depends on the choice of 
distance. Nevertheless, since σ⊗N−1

1 ⊗ σ2, σ
⊗N
2  and σ⊗N−1

3 ⊗ I form a triple of anticom-
muting matrices, one can easily see that the trace distance between any two EGN  states 
with even N reduces to (half) the Euclidean distance between their corresponding triples, 
as is also the case for the M3

N  states with odd N [54]. This means that the trace distance-
based measure of M-inseparable multiqubit entanglement for ϖ is simply the Euclidean 
distance from its triple to the unit octahedron.

		 We now prove that the analytical expression of the robustness of M-inseparable multiqubit 
entanglement ER

M(�) of an arbitrary EGN  state ϖ for any odd N  >  1 is the following:

ER
M(�) =

{
0, h� � 0 or M � �N/2�+ 1;
h�, otherwise.� (24)

		 To do this, given an EGN  state ϖ and taking into account equation (8), we need to solve 
the following simplified optimisation (which can easily be posed as a semidefinite pro-
gram [51])

ER
M(�) = inf

τ∈EGN

{
s � 0

∣∣∣∣
� + sτ
1 + s

=: σ ∈ SEGN
M

}
,� (25)

		 i.e. we need to find the smallest positive s such that σ = �+sτ
1+s  is an M-separable EGN  

state and τ is any EGN  state. In other words, we need to prove that s = h� is the smallest 

positive s for which σ = �+sτ
1+s  is represented in the {d1, d2, d3}-space by a point belonging 

to the unit octahedron O1, and τ by any point in the tetrahedron T(−1)(N−1)/2, provided 
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that h� � 0 and M � �N/2�+ 1, which are the only nontrivial cases where ϖ is not 
M-separable.

		 In the following we will assume without loss of generality that ϖ belongs to the corner 
containing the vertex {(−1)(N−1)/2, (−1)(N−1)/2, (−1)(N−1)/2}, since all the EGN  states 
belonging to the other three corners can be obtained from this by simply applying a 
single-qubit local unitary σi ⊗ I⊗N−1, i ∈ {1, 2, 3}, under which any sort of multiqubit 
entanglement is invariant.

		 The optimisation in equation (25) can be solved simply by using the fact that the optimal 
τ must be as far from ϖ as possible and is hence represented by a point on the base of the 
tetrahedron T(−1)(N−1)/2 with respect to ϖ, i.e. given by a triple {e1, e2, e3} satisfying

e1 + e2 + e3 = −(−1)(N−1)/2,� (26)

		 shown as the shaded red region in figure 3. For a given τ satisfying this condition, one 
can then easily see that the optimal σ lies on the intersection of the line connecting τ 
and ϖ (given by the convex combination σ = �+sτ

1+s  for s � 0) with the face of the unit 
octahedron O1 closest to ϖ, given by any triple {s1, s2, s3} satisfying

s1 + s2 + s3 = (−1)(N−1)/2,� (27)

Figure 3.  The geometry of EGN  states for odd N and M > �N/2�+ 1, together with 
example choices of optimal states σ, τ for the generalised robustness ER

M(�). The 
tetrahedron T(−1)(N−1)/2 can be seen to contain the M-separable octahedron O1 (shaded 
blue). For any choice of ϖ, the closest M-separable states σ lie in the face of the 
octahedron closest to ϖ (shaded yellow), and the optimal τ lie in the base of the 
tetrahedron (shaded red). The particular choice of the optimal state σ is also the closest 
M-separable state with respect to any bona fide distance measure of entanglement. 
Instead, another optimal state σ′ can be seen to constitute a valid optimal choice for the 
standard robustness of M-inseparable entanglement since τ ′ is also M-separable.
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		 see again figure 3 for an illustration. One then finds that s = h�, which holds for any 
choice of τ on the base of the tetrahedron.

		 It is hence clear that there is not a unique pair of τ ∈ EGN  and σ ∈ SEGN
M  satisfying the 

infimum in equation (25). We have shown that one can in fact satisfy the infimum with any 
τ on the base of the tetrahedron furthest from ϖ and any σ on the face of the octahedron 
closest to ϖ, provided that they are colinear with ϖ itself. The optimal s is then given 
by the plane height h�, as shown in equation  (24). The non-uniqueness in the optim
isation means that the infimum can even be satisfied by an M-separable τ sitting on the 
face of the octahedron O1 furthest from ϖ. A consequence of this is that the robustness 
of M-inseparable multiqubit entanglement ER

M(�) of any EGN  state ϖ coincides with 
the standard robustness, where the optimisation over τ in equation (25) is additionally 
restricted to M-separable states [49]. The standard robustness was previously calculated 
for two-qubit Bell-diagonal states in [67], which have an identical geometry to the odd N 
EGN  states.

		 It is also relevant to note that the robustness of M-inseparable multiqubit entanglement 
coincides with (twice) the trace distance-based measure EDTr

M (�) = h�/2 for EGN  states 
ϖ with odd N  >  1 [54]. Intriguingly, the closest M-separable state to ϖ according to any 
contractive distance (such as the trace distance) is also a valid M-separable EGN  state 
satisfying the optimisation for the robustness, see figure 3. Additionally, we note that the 
standard and generalised robustness provide, respectively, upper and lower bounds for a 
family of norms introduced in [5] which constitute measures of M-inseparable multiqubit 
entanglement generalising the greatest cross norm [68]. The fact that the two robustness 
quantifiers coincide in this case then implies that the multiqubit norms are also equal to 
them for all EGN  states. These simplifications for EGN  states highlight the wide scope 
of the applicability of our framework to different resource measures when one chooses a 
suitably simple class of RGSs.

	Step four: �optimise the lower bound EM(Π(U⊗ρU†
⊗)) � EM(ρ) over single-qubit local uni-

taries U⊗.

		 We now consider optimising the lower bound provided through our framework to EM(ρ) 
for any state ρ by varying over single-qubit unitaries U⊗ =

⊗N
α=1 U(α) and considering 

the corresponding EGN  state Π(U⊗ρU†
⊗), resulting in the maximised lower bound

sup
U⊗

EM(Π(U⊗ρU†
⊗)) � EM(ρ).� (28)

		 Experimentally, the optimised bound can be accessed by measuring a triple of correlations 
functions {d̃j} given by the expectation values of correspondingly rotated Pauli operators on 

each qubit, ̃d1 = 〈U†
⊗(σ

⊗N−1
1 ⊗ σ2)U⊗〉, ̃d2 = 〈U†

⊗σ
⊗N
2 U⊗〉, ̃d3 = 〈U†

⊗(σ
⊗N−1
3 ⊗ I)U⊗〉, 

and is non-zero whenever M > �N/2�+ 1 and 
∑3

j=1 |d̃j| > 1. For odd N  >  1, optimality 
in equation (28) for both the family of distance-based measures and the robustness can 

always be achieved by the choice of U⊗ such that the quantity h̃� = 1
2

(∑3
j=1 |d̃j| − 1

)
 is 

maximum. For even N, while measures are not generally monotonic functions of h̃�, one 
can take as an ansatz that optimising h̃� provides an improved lower bound.

In table 1 we can see how useful our results are on the paradigmatic example of the N-qubit 
GHZ state [69]
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|GHZ(N)〉 = 1√
2
(|00 · · · 00〉+ |11 · · · 11〉) ,� (29)

with N � 3, which constitutes a primary resource for quantum computation and metrology 
[70]. See [54] for a comparison to results for M3

N  states. Here, due to the qubit permutation 
invariance of |GHZ(N)〉 [54], optimisation of h̃� can be achieved by setting all the single-qubit 
unitaries to be identical, i.e. U(α) = U2 for all α. Here, U2 can be parameterised by 3 angles 
{θ,ψ,φ} in the following way,

U2 =

(
cos θ

2 e−i ψ+φ
2 −i sin θ

2 e−i φ−ψ
2

−i sin θ
2 ei φ−ψ

2 cos θ
2 ei ψ+φ

2

)
.� (30)

5.  Discussion

Our general framework provides a clearcut approach to finding lower bounds to resource 
measures evaluated on arbitrary states. This framework is founded upon the hereby introduced 
concepts of resource non-increasing projections and the corresponding resource guarantor 
states. Each step in the framework is feasible to carry out. The first step can be performed by 
systematically identifying an RNIP, as we have shown in section 4.2, or by using intuition 
about the resource under consideration, as may be done for coherence. The second step can be 
realised by characterising the intersection between free states and RGSs, as we have shown in 
appendix C for multiqubit entanglement. The resultant optimisation in step three is necessarily 
simpler than for the corresponding arbitrary state due to the simplified structure of the RGS. 
We have furthermore shown that the optimisation can be expressed as an SDP for the resource 
robustness and can hence be evaluated computationally with little overhead. Finally, varying 
over local unitaries in the fourth step can be a restricted optimisation over a constrained and/
or discrete set of candidates. Moreover, our framework is more experimentally friendly in the 
sense that it necessarily requires fewer measurements than a full state tomography.

We illustrated the relevance of this framework for multiqubit entanglement by constructing 
a general accessible formalism to identify entanglement non-increasing projections and their 
resource guarantor states, giving a particular example of a projection that results in suitably 
defined EGN  states. We then proceeded to complete the steps of our framework for this exam-
ple, allowing us to find analytic lower bounds to the multiqubit entanglement of GHZ states 
that can be measured experimentally using only three local measurement settings.

Table 1.  Lower bounds to the M-inseparable multiqubit entanglement of |GHZ(N)〉 
when M > �N/2�+ 1 can be improved by maximising 

∑3
j=1 |d̃j| = 2h̃� + 1, with 

identical single-qubit unitaries described by the angles {θ,ψ,φ}.

N State {d̃1, d̃2, d̃3}
∑3

j=1 |d̃j| {θ,ψ,φ}

3 |GHZ(3)〉 {1,−1, 1} 3
{

0, π
12 , π

12

}

4 |GHZ(4)〉
{

1√
2
, 1√

2
, 0
} √

2
{

0, π
32 , π

32

}

5 |GHZ(5)〉 {1, 1, 1} 3
{

0, π
20 , π

20

}

6 |GHZ(6)〉
{

1√
2
,− 1√

2
, 0
} √

2
{

0, π
48 , π

48

}

7 |GHZ(7)〉 {1,−1, 1} 3
{

0, π
28 , π

28

}
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Our approach can be understood as a particular type of quantitative resource witness [71, 
72], providing an approximation of the resources present in a system based on the results of 
a limited selection of measurement settings. It will be of further interest to compare the effi-
ciency of lower bounds arising from our framework to those arising from other approaches, 
as has been done specifically for entanglement in [54]. Nevertheless, our framework relies on 
the universal concept of resource monotonicity, and can hence be applied in principle to a vast 
range of possible resource measures.

We have focused in this work on the provision of lower bounds to resource measures. 
These lower bounds are useful for verifying the minimum usefulness of a resource state. In 
practice, whenever a measure can be linked to the performance of an operational protocol, 
our lower bounds can be harnessed to guarantee a worst-case performance of using a given 
resource state. Nevertheless, evaluating upper bounds on relevant resource measures is also 
important, allowing for better comparison between resource states and hence a finer grained 
identification of states most useful in an operational setting. Our framework is geared towards 
providing lower bounds by contracting the state space using resource non-increasing projec-
tions. It will be of future interest to identify dual frameworks able to identify upper bounds for 
a given class of resource states.

By applying our framework to EGN  states, we have been able to provide new results for 
evaluating the robustness of entanglement in both EGN  states with odd N and M3

N  states with 
even N, complementing previous evaluations of the robustness of entanglement for two-qubit 
Bell diagonal states [67]. Our results show that the robustness coincides, for Bell diagonal 
states, with the plane height h�, which equates the two-qubit concurrence and half the trace 
distance-based measure of entanglement. Our approach therefore allowed the evaluation of 
the robustness of entanglement, which is an NP-hard problem [73], to be simplified to an intui-
tive geometric optimisation for relevant classes of states. It is hoped that our framework will 
provide further simplifications when using alternative resource non-increasing projections.

Quantum resources embody the power behind presently developing quantum technologies. 
These technologies will require rigorous verification, through benchmarking, of the resources 
present in the employed devices. Our framework allows for a quantitative benchmark with a 
low overhead. Some of the next steps of our work could be to provide a variety of new lower 
bounds to resource measures stemming from different choices of projections. From an analyti-
cal perspective, it will be of interest to formalise whether a link exists between the strength of 
the projection (i.e. the amount of resource lost) and the simplicity of the corresponding family 
of resource guarantor states. Here it is expected that one necessarily loses a lot of resource by 
projecting onto a simple family. On the other hand, experimentally it will be interesting to har-
ness our established lower bounds for concrete applications and proof-of-concept experiments 
to verify and quantify the resources present in complex quantum systems.
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Appendix A.  Properties of tensor products of Pauli matrices

For any α,β ∈ IN , it holds that P2
α = I and that Pα and Pβ can only either commute (i.e. 

[Pα, Pβ] = 0) or anti-commute (i.e. {Pα, Pβ} = 0). More specifically, [Pα, Pβ] = 0 if there 
is an even number (including zero) of indices i ∈ {1, · · · , N} such that {σαi ,σβi} = 0, 
whereas {Pα, Pβ} = 0 otherwise. Moreover, given any set of matrices {Pαi}n

i=1, we have that 
Pα1 Pα2 · · ·Pαn is equal to either ±Pβ or ±iPβ for some β ∈ IN . In the following, with abuse 
of notation, we will denote any of the matrices ±Pβ or ±iPβ simply by P′

β as their unitary 

transformation on any state ρ, i.e. P′
βρP′†

β, provides exactly the same output. Finally, given an 
arbitrary matrix Pα, we get that [Pα, Pα1 Pα2 · · ·Pαn ] = 0 if Pα anti-commutes with an even 
number (including zero) of matrices {Pαi}n

i=1, while {Pα, Pα1 Pα2 · · ·Pαn} = 0 otherwise. 
As a consequence, if one considers the following set composed of 2n matrices:

{P′
βi
}2n

i=1 =




I⊗N

{Pαi1
}n

i1=1

{Pαi2
Pαi1

}n
i2>i1=1

· · ·
{Pαin

. . .Pαi2
Pαi1

}n
in>...>i2>i1=1




,

it happens that an arbitrary matrix Pα can only either commute with all the above listed matri-
ces P′

βi
 or commute with half of them and anti-commute with the remaining half.

Appendix B.  Eigendecomposition of the EGN  states

For odd N  >  1, the EGN  states are all diagonal in the following basis:

|β±
j 〉 = 1√

2

(
I⊗N ± iσ⊗N

1

)
|j〉,� (B.1)

with the corresponding eigenvalues given by:

λ±
p,q =

1
2N

[
1 ± (−1)qd1 ± (−1)(N−1)/2(−1) pd2 + (−1) p−qd3

]
,� (B.2)

where i is the imaginary unit, j ∈ {1, · · · , 2N−1}, {|j〉}2N

i=1 is the binary ordered N-qubit com-
putational basis, while p and q are defined as

σ⊗N
3 |β±

i 〉 = (−1) p|β±
i 〉,� (B.3)

I⊗N−1 ⊗ σ3|β±
i 〉 = (−1)q|β±

i 〉.� (B.4)

For even N, the eigenvalues of the EGN  states are given by

λ± =
1

2N

(
1 ±

√
d2

1 + d2
2 + d2

3

)
,� (B.5)

as it can be easily shown by using the fact that in this case σ⊗N−1
1 ⊗ σ2, σ

⊗N
2  and σ⊗N−1

3 ⊗ I 
form a triple of anticommuting matrices.
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Appendix C.  Characterising the M-separable EGN  states

Here we characterise the set SEGN
M  of M-separable EGN  states for any 2 � M � N . We see that 

for M > �N/2�+ 1, all and only the M-separable EGN  states satisfy |d1|+ |d2|+ |d3| � 1, 
and hence fill the set represented in the {d1, d2, d3}-space by the unit octahedron O1 with ver-
tices {±1, 0, 0}, {0,±1, 0} and {0, 0,±1}. Instead, when M � �N/2�+ 1, all the EGN  states 
are M-separable.

To prove this, it will be useful to introduce a notion of separability that depends on a 
particular partition of the composite system under consideration, as opposed to the already 
introduced notion of M-separability, which rather considers indiscriminately all the partitions 
with a set number M of parties. In order to characterise the possible partitions of an N-qubit 
system, we will employ the following notation [74]:

	 •	�the positive integer M, 2 � M � N , representing the number of subsystems; 
	 •	�the set of positive integers {Kα}M

α=1 = {K1, K2, · · · , KM}, where a given Kα represents 
the number of parties belonging to the αth subsystem; 

	 •	�the set of sequences of positive integers {Qα}M
α=1, with Qα =

{
i(α)1 , i(α)2 , · · · , i(α)Kα

}
, 

i(α)j ∈ {1, · · · , N} and Qα ∩ Qα′ = ∅ for α �= α′, where a given sequence Qα represents 
precisely the parties belonging to the αth subsystem.

In the following, Q̃M := {Qα}M
α=1 will denote a generic M-partition of an N-qubit system 

and we will assume without loss of generality that N ∈ QM, i.e. the Nth qubit is always con-
tained in the Mth subsystem. The separable states with respect to the M-partition Q̃M  are then 
defined as states ς  of the form

ς =
∑

i

pi τ
(1)
i ⊗ τ

(2)
i ⊗ . . .⊗ τ

(M)
i ,� (C.1)

where {pi} is a probability distribution and τ (α)i  are arbitrary states of the αth subsystem. In 
other words, any Q̃M-separable state can be written as a convex combination of product states 
that are all factorised with respect to the same partition Q̃M . The set of Q̃M-separable states 
will be denoted as SQ̃M

.
To achieve the characterisation of the M-separable EGN  states, we first need to identify the 

sets SEGN

Q̃M
 of Q̃M-separable EGN  states obtained by considering all the possible M-partitions 

Q̃M , being the convex hull of their union exactly the set SEGN
M , i.e.

SEGN
M = conv


⋃

Q̃M

SEGN

Q̃M


 .� (C.2)

Moreover, we will also need to use the fact that, on one hand, the set of the triples {c1, c2, c3}, 
with ci = Tr(ρσ⊗N

i ), obtained by considering any possible N-qubit state ρ is [54]

	 •	 the unit ball B1, when N is odd;
	 •	 the tetrahedron T(−1)N/2 , when N is even.

On the other hand, as we have seen here, the set of the triples {d1, d2, d3}, with 

d1 = Tr
[
ρ(σ⊗N−1

1 ⊗ σ2)
]
, d2 = Tr

[
ρσ⊗N

2

]
, and d3 = Tr

[
ρ(σ⊗N−1

3 ⊗ I)
]
, obtained by consid-

ering any possible N-qubit state ρ is
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	 •	 the unit ball B1, when N is even;
	 •	 the line segment L1 := {(t, t, 1) | − 1 � t � 1}, when N  =  1;
	 •	 the tetrahedron T(−1)(N−1)/2, when N  >  1 is odd.

Herein, we shall refer to the triple {c1, c2, c3}, with ci = Tr(ρσ⊗N
i ), as the M3

N  triple 
of the state ρ. On the other hand, the triple {d1, d2, d3}, with d1 = Tr

[
ρ(σ⊗N−1

1 ⊗ σ2)
]
, 

d2 = Tr
[
ρσ⊗N

2

]
, and d3 = Tr

[
ρ(σ⊗N−1

3 ⊗ I)
]
, will be referred to as EGN  triple of the state ρ.

Now each set SEGN

Q̃M
 coincides with the set ΠG

[
SQ̃M

]
 obtained by projecting all the Q̃M-sep-

arable states onto the EGN  states via the ENIP ΠG defined in equations (20)–(22). Therefore, 
the Q̃M-separable EGN  states are represented in the {d1, d2, d3}-space by the EGN  triples 

{s1, s2, s3}, s1 = Tr
[
ς(σ⊗N−1

1 ⊗ σ2)
]
, s2 = Tr

[
ςσ⊗N

2

]
, s3 = Tr

[
ς(σ⊗N−1

3 ⊗ I)
]
, corresponding 

to all the elements ς  of SQ̃M
. These are given by

sj =
∑

i

pi

M−1∏
α=1

c(α)i,j d(M)
i,j ,� (C.3)

where we denote c(α)i,j = Tr
(
τ
(α)
i σ⊗Kα

j

)
 as the jth component of the M3

Kα
 triple 

�c(α)i = {c(α)i,1 , c(α)i,2 , c(α)i,3 } corresponding to the arbitrary state τ (α)i  of the αth subsys-

tem, with α < M , while d(M)
i,j = Tr

(
τ
(α)
i σ⊗KM

j

)
 is the jth component of the EGKM  triple 

�d(M)
i = {d(M)

i,1 , d(M)
i,2 , d(M)

i,3 } corresponding to the arbitrary state τ (M)
i  of the Mth subsystem 

(which contains the Nth qubit). Equation  (C.3) can be easily proved by resorting to equa-
tion (C.1). For example, when considering the case j  =  1, we get:

s1 = Tr
[
ς(σ⊗N−1

1 ⊗ σ2)
]

= Tr

[(∑
i

piτ
(1)
i ⊗ . . .⊗ τ

(M−1)
i ⊗ τ

(M)
i

)
(σ⊗N−1

1 ⊗ σ2)

]

=
∑

i

pi Tr
[
τ
(1)
i σ⊗K1

1 ⊗ . . .⊗ τ
(M−1)
i σ

⊗KM−1
1 ⊗ τ

(M)
i (σ⊗KM−1

1 ⊗ σ2)
]

=
∑

i

pi

M−1∏
α=1

Tr
(
τ
(α)
i σ⊗Kα

1

)
Tr

[
τ
(M)
i (σ⊗KM−1

1 ⊗ σ2)
]

=
∑

i

pi

M−1∏
α=1

c(α)i,1 d(M)
i,1 .

�

(C.4)

Equation (C.3) can be simplified further by introducing the Hadamard product as the 
componentwise multiplication of vectors, i.e. for �u = {u1, u2, u3} and �v = {v1, v2, v3} the 
Hadamard product is �u ◦�v = {u1v1, u2v2, u3v3}. Using the Hadamard product gives equa-
tion (C.3) as

�s =
∑

i

pi�c
(1)
i ◦ . . . ◦�c(M−1)

i ◦ �d(M)
i ,� (C.5)

i.e. that the EGN  triple of any Q̃M-separable state is a convex combination of the Hadamard 
products between the M3

Kα
 triples corresponding to the first M  −  1 subsystem states and the 

EGKM  triple of the Mth subsystem state.

By assuming that the Nth qubit belongs to the Mth subsystem, we get that �c(α)i ∈ B1 when 
α < M  and Kα is odd, �c(α)i ∈ T(−1)Kα/2 when α < M  and Kα is even, �d(M)

i ∈ B1 when KM 
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is even, �d(M)
i ∈ L1 when KM  =  1, and finally �d(M)

i ∈ T(−1)(KM−1)/2  when KM  >  1 is odd. As a 
consequence, SEGN

Q̃M
 is represented by the following set

SEGN

Q̃M
= conv

(
A(1) ◦ . . . ◦ A(M−1) ◦ A(M)

)
,� (C.6)

with

A(α) =




B1 if α < M, Kα is odd
T(−1)Kα/2 if α < M, Kα is even,
B1 if α = M, KM is even,
L1 if α = M, KM = 1
T(−1)(Kα−1)/2 if α = M, KM > 1 is odd,

� (C.7)

where we define the Hadamard product between any two sets A and B as

A ◦ B = {�a ◦�b |�a ∈ A , �b ∈ B}.� (C.8)

The commutativity and associativity of the Hadamard product allow us to rearrange the order-
ing in equation (C.6) in the following way

SEGN

Q̃M
=





conv
(
A(1,··· ,M−1) ◦ B1

)
if KM is even,

conv
(
A(1,··· ,M−1) ◦ L1

)
if KM = 1

conv
(

A(1,··· ,M−1) ◦ T(−1)(KM−1)/2

)
if KM > 1 is odd,

� (C.9)

where

A(1,··· ,M−1) := ©M−1
α=1 A(α) =

(
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦

(
©

ν<M:Kν odd
B1

)

� (C.10)

and ©n
α=1A(α) := A(1) ◦ A(2) ◦ . . . ◦ A(n).

Now by using equation (C.9) together with the following equations [54]

T−1 ◦ T−1 = T1,
T1 ◦ T1 = T1,

T1 ◦ T−1 = T−1,
T±1 ◦ B1 = B1,
T±1 ◦ L1 = T±1,
B1 ◦ L1 = B1,

conv (©n
i=1B1) = O1 ∀n � 2

� (C.11)

and the fact that conv(A) = A if A is convex, we identify the following cases:

	 (i)	�if Kα is even for any α then

SEGN

Q̃M
= conv

[(
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦ B1

]

= conv (T±1 ◦ B1)

= conv (B1)

= B1;

� (C.12)
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	(ii)	�if Kα is even for all values of α < M  and KM  =  1 then

SEGN

Q̃M
= conv

[(
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦ L1

]

= conv
(
T(−1)(N−1)/2 ◦ L1

)

= T(−1)(N−1)/2 ;

� (C.13)

	(iii)	�if Kα is even for all values of α < M  and KM  >  1 is odd then

SEGN

Q̃M
= conv

[(
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦ T(−1)(KM−1)/2

]

= conv
(
T(−1)(N−KM)/2 ◦ T(−1)(KM−1)/2

)

= T(−1)(N−1)/2 ;

� (C.14)

	(iv)	�if Kα is odd for just one value of α < M  then

SEGN

Q̃M
= conv

[(
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦ B1 ◦ B1

]

= conv (B1 ◦ B1)

= O1;

� (C.15)

	(v)	�if Kα is odd for just one value of α < M  and KM  =  1 then

SEGN

Q̃M
= conv

((
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦ B1 ◦ L1

)

= conv (B1)

= B1;

� (C.16)

	(vi)	�if Kα is odd for just one value of α < M  and KM  >  1 is odd then

SEGN

Q̃M
= conv

((
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦ B1 ◦ T±

)

= conv (B1)

= B1;

� (C.17)

	(vii)	� if M  >  2, Kα is odd for all values of α and KM  =  1 then

SEGN

Q̃M
= conv

((
©

ν<M:Kν odd
B1

)
◦ L1

)

= conv

(
©

ν<M:Kν odd
B1

)

= O1;

� (C.18)
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	(viii)	� if M  >  2, Kα is odd for all values of α and KM  >  1 then

SEGN

Q̃M
= conv

((
©

ν<M:Kν odd
B1

)
◦ T±

)

= conv

(
©

ν<M:Kν odd
B1

)

= O1;

�

(C.19)

	(ix)	�otherwise,

SEGN

Q̃M
= conv

[(
©

µ<M:Kµ even
T(−1)Kµ/2

)
◦

(
©

ν<M:Kν odd
B1

)
◦ A(M)

]

= conv

[
T±1 ◦

(
©

ν<M:Kν odd
B1

)
◦ A(M)

]

= conv

(
©

ν:Kν odd
B1

)

= O1.

�

(C.20)

For any even N-qubit system, only a Q̃M  partitioning within cases (i), (v)–(ix) may be 
realised. In cases (i), (v) and (vi), i.e. when either Kα is even for any α or Kα is odd for just 

two values of α, one of which is α = M , we have that SEGN

Q̃M
 is the set B1 of all EGN  states. 

Otherwise, in cases (vii)–(ix), we have SEGN

Q̃M
= O1.

For any odd N-qubit system, only a Q̃M  partitioning within cases (ii)–(iv) and (vii)–(ix) 

may be realised. In cases (ii) and (iii), i.e. when Kα is odd only for α = M , we have that SEGN

Q̃M
 

is the set T(−1)(N−1)/2 of all EGN  states. Otherwise, in cases (iv), (vii), (viii) and (ix), we have 

SM3
N

{Kα}M
α=1

= O1.
Now we are finally ready to characterise the set of M-separable EGN  states SEGN

M  by using 
equation  (C.2). One can easily see that for any M � �N/2�+ 1 one can always find an 
M-partition Q̃M  such that Kα is odd for at most two values of α, one of which is α = M , and 

thus SEGN

Q̃M
= EGN , whereas for any M > �N/2�+ 1 this is impossible and thus SEGN

Q̃M
= O1 

for any M-partition Q̃M .
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