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Consumption of magic states promotes the stabilizer model of computation to universal quantum com-
putation. Here, we propose three different classical algorithms for simulating such universal quantum
circuits, and characterize them by establishing precise connections with a family of magic monotones.
Our first simulator introduces a new class of quasiprobability distributions and connects its runtime to
a generalized notion of negativity. We prove that this algorithm has significantly improved exponen-
tial scaling compared to all prior quasiprobability simulators for qubits. Our second simulator is a new
variant of the stabilizer-rank simulation algorithm, extended to work with mixed states and with signif-
icantly improved runtime bounds. Our third simulator trades precision for speed by discarding negative
quasiprobabilities. We connect each algorithm’s performance to a corresponding magic monotone and,
by comprehensively characterizing the monotones, we obtain a precise understanding of the simulation
runtime and error bounds. Our analysis reveals a deep connection between all three seemingly unrelated
simulation techniques and their associated monotones. For tensor products of single-qubit states, we prove
that our monotones are all equal to each other, multiplicative and efficiently computable, allowing us to
make clear-cut comparisons of the simulators’ performance scaling. Furthermore, our monotones estab-
lish several asymptotic and nonasymptotic bounds on state interconversion and distillation rates. Beyond
the theory of magic states, our classical simulators can be adapted to other resource theories under certain
axioms, which we demonstrate through an explicit application to the theory of quantum coherence.
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I. INTRODUCTION

Classical simulation of quantum systems has a long and
fruitful history. Insurmountable obstructions to the classi-
cal simulation of quantum systems gave birth to the field of
quantum computation [1] and the search for quantum com-
putational resources. Despite the computational limitations
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of classical simulation, surprisingly powerful classical
simulators have since been discovered including simula-
tors of stabilizer circuits [2,3], fermionic linear optics and
matchgates [4–7], and others [8–13]. Improvement and
characterization of classical simulation algorithms helps
benchmark the computational speedups that quantum com-
puters can provide and also provides tools useful in their
own right [14–16].

Stabilizer circuits are initialized in so-called stabilizer
states and evolved by stabilizer operations, such that the
system stays in a stabilizer state throughout the whole
computation. These circuits are important in fault-tolerant
quantum computation and can be efficiently classically
simulated by virtue of the Gottesman-Knill theorem [2].
An elegant extension of stabilizer circuits enables them to
perform universal computation by allowing the input states
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to include so-called magic states [17,18]. Aaronson and
Gottesman [3] showed how to classically simulate such
circuits with a runtime that scales exponentially with the
number of input magic state qubits, yet still scales effi-
ciently with respect to the number of stabilizer-state qubits.
Consequently, we can perform an efficient classical simu-
lation for any class of circuits that is nearly stabilizer in the
sense that they use only logarithmically many input magic
state qubits. Subsequent developments showed that the dif-
ficulty of simulating a quantum circuit depends not only on
the number of magic state inputs, but also on the type of
magic that these states possess.

In the pursuit of faster classical simulation of nearly
stabilizer circuits, two leading approaches have emerged:
quasiprobability [15,19–22] and stabilizer rank–based
[23–26] simulators. These simulators all have their run-
time determined by a function called a magic monotone
that quantifies how far the magic states deviate from the
set of stabilizer states. With these modern simulators, even
a very large number of magic state inputs is classically
tractable, provided the magic states are close enough to
stabilizer states, as quantified by the relevant magic mono-
tone. However, different simulators come with their own
magic monotone and therefore different runtime scalings.
So far, no overarching study has precisely compared the
runtimes and monotones for different stabilizer simula-
tors. The difficulty of comparison is exacerbated since
some monotones are not easily calculated. We next review
these simulation methods, before stating our main results
that further sharpen the performance of modern simulators
and reveal a cohesive picture of a previously fragmented
landscape of simulators.

A. Review of prior art

Quasiprobability simulators work by representing the
target quantum state by an operator probabilistically cho-
sen from a discrete set known as a frame [20,27]. Examples
of relevant frames include the set of density operators cor-
responding to pure stabilizer states [21], the set of Pauli
operators [28], and the set of phase-point operators [20]
used in the construction of the discrete Wigner function
[29,30]. Importantly, given a choice of a classically simu-
lable frame, any input state, which is a convex combination
of frame elements admits an efficient classical simulation
algorithm [31]. In Ref. [20], Pashayan et al. showed that
when the input state is a nonconvex linear combination
of frame elements, the only source of inefficiency in the
runtime of quasiprobabilistic algorithms is given by the
negativity of the state—a frame-dependent quantity, which
measures the degree of departure from convex mixtures of
frame elements.

Quantum systems consisting of odd-dimensional sub-
systems (qudits) [32–34] admit an especially natural
choice of frame. Here, the frame can be fixed to a set of

phase-point operators for which the convex combinations
of frame elements are the states with a positive discrete
Wigner function [29,30]. All qudit stabilizer states have a
positive Wigner function, which leads to efficient, classical
simulation of qudit stabilizer circuits [31]. The negativ-
ity under this choice of frame was shown in Ref. [20] to
correspond to the mana M(·)—a magic monotone intro-
duced in Ref. [35]. Notably, the mana has the convenient
property that it is multiplicative [36], i.e., M(ρ ⊗ σ) =
M(ρ)M(σ ). Computations of the mana in large dimen-
sions are generally extremely difficult, but, due to multi-
plicativity, they are significantly simplified for products of
states on smaller systems. Multiplicativity of operationally
meaningful monotones allows for an easy evaluation of
related quantities, such as a simulator’s runtime or bounds
on asymptotic rates of state conversion.

Curiously, for the fundamentally important case of
qubits, phase-point operator frames do not possess many
of the aforementioned desirable properties. A straightfor-
ward application of techniques that work for qudits yields
a Wigner function that can be negative for some pure
stabilizer states. Although alternative ways of defining a
well-behaved Wigner function for qubits are possible, they
always [37] suffer from drawbacks such as the free opera-
tions and states being restricted to a subclass of the usual
free operations [38,39]; or the monotones being super-
multiplicative and the set of positively represented states
not being closed under tensor product [40]. Quasiprobabil-
ity simulators based on qubit phase-point operator frames
inherit these limitations, prompting alternative approaches.

In Ref. [21] Howard and Campbell presented a
quasiprobability simulator for qubits using a frame com-
posed of projectors onto pure stabilizer states. They
showed that this gives rise to a classical simulation
algorithm with a runtime linked to a magic monotone
called the robustness of magic. It is a qubit-based sim-
ulator that permits and utilizes the simulation of noisy
inputs and operations, and possesses many desirable traits.
However, presently, quasiprobability simulators are slower
than stabilizer-rank simulators; additionally, the robustness
of magic is nonmultiplicative and extremely difficult to
compute, even in the asymptotic regime for products of
relevant single-qubit states [17,41].

A seemingly independent line of work on classical sim-
ulation was introduced in Ref. [23] with the stabilizer
rank–based simulators [23,25,42–44]. These simulators
achieve a stronger notion of simulation [45] by approxi-
mately sampling from the output distribution of the quan-
tum circuit. However, they can only simulate pure states
and operations and have not previously been generalized
to noisy quantum circuits. Stabilizer-rank simulators rep-
resent the initial quantum-state vector as a superposition
of stabilizer states, and the only source of inefficiency
in runtime is introduced by the exponential number of
terms required to represent states in this way—the minimal
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number of such terms being precisely the stabilizer rank.
The original algorithm had a runtime quadratic in the
stabilizer rank, but this was later improved by the develop-
ment of fast norm estimation [24] that provides a runtime
linear in stabilizer rank. This has resulted in a sizable
runtime advantage for stabilizer-rank simulators, and it is
currently unclear if a similar improvement in quasiproba-
bilistic methods is possible. To circumvent the difficulty
in computing the stabilizer rank as well as its nonmul-
tiplicative behavior, Ref. [24] also introduced the notion
of approximate stabilizer rank, which was later related to
a monotone called the stabilizer extent [25]. While the
extent is in general not multiplicative [46], it is multiplica-
tive on any tensor product of one-, two-, and three-qubit
states [25]. Unfortunately, these concepts only apply to
pure states, and no mixed-state simulation method based
on the stabilizer rank has been devised thus far.

B. Summary of results

In this paper, we present three new classical simula-
tion algorithms (overviewed in Table I), which we call
the dyadic frame, the density-operator stabilizer rank and
the constrained path simulators. The algorithms allow
classical simulation of general noisy stabilizer circuits
with mixed magic state inputs, providing a significant
extension of the capabilities of previous approaches, and

revealing connections between stabilizer rank–based and
quasiprobability-based simulation. The dyadic frame and
constrained path simulators produce additive precision
estimates of Born-rule probabilities and Pauli observ-
ables, while the density-operator stabilizer-rank simulator
approximately samples from the quantum circuit’s mea-
surement outcome distribution. Our first two simulators
trade-off quantum computational resources for additional
runtime of classical simulation. The constrained path sim-
ulator, on the other hand, is always efficient in runtime,
instead reducing in accuracy as the simulated quantum
circuits increase in magic.

Our dyadic frame simulator is a new state-of-the-art
quasiprobability simulator for qubits. Instead of sampling
from stabilizer states or phase-point operators, we sample
from objects we call stabilizer dyads. We show the corre-
sponding resource monotone is smaller than the robustness
of magic, leading to faster simulation runtimes. This can
lead to a significantly improved exponent in the exponen-
tial scaling of the simulator’s performance: for instance,
for n copies of a T state the dyadic simulator has a runtime
O(40.228443n), whereas for simulators based on the robust-
ness of magic [21,22] the runtime is lower bounded by
�(40.271553n).

Our stabilizer-rank simulator is a new state-of-the-art
simulator for sampling from qubit-based quantum circuits

TABLE I. A summary of the properties of our three classical simulation algorithms and their connections with magic monotones.
Here, pfail denotes the failure probability of the associated algorithm.
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with three key technical contributions. First, our work
generalizes the stabilizer-rank simulator of Refs. [24,25]
from pure states to general mixed states. This allows our
classical simulator to operate in and be directly compa-
rable to more experimentally relevant regimes, where the
input magic states are noisy. The natural generalization
to mixed states produces a simulator with a probabilistic
runtime. Second, we show this runtime can be made deter-
ministic for an important subset of magic states. Third,
we substantially improve runtimes by exploiting tighter
proof techniques available in the density operator picture.
Remarkably, this density operator technique is applicable
and advantageous even when simulating pure states.

We show that each of our simulators—the dyadic frame,
the density-operator stabilizer rank, and the constrained
path simulator—is associated with a particular magic
monotone, which we call the dyadic negativity, the mixed-
state extent, and the generalized robustness, respectively.
Specifically, we show that the runtime (in the case of the
dyadic frame and density-operator stabilizer-rank simu-
lators) or the precision (in the case of the constrained
path simulator) of the algorithms directly relates to the
corresponding magic monotone. This identifies the expo-
nential growth of magic as the only source of inefficiency
in these simulators. Crucially, we completely characterize
these monotones for single-qubit states and tensor products
thereof, where we prove the unexpectedly strong result that
these monotones are all equal and act multiplicatively. The
multiplicativity of the monotones is the first result of this
type for general qubit magic monotones, and the equality
between all three monotones reveals a deep and precisely
quantified connection between the runtimes of stabilizer-
rank and quasiprobability simulators. To the best of our
knowledge, no previous work has established a quanti-
tative connection between these, a priori very different,
classes of simulators. All of the monotones reduce to the
stabilizer extent for pure states, and so they can all be con-
sidered as generalizations of the extent to mixed states. In
addition to serving as an important contribution to magic
theory and tightly characterizing the resource consumption
of our simulators, we use the monotones to introduce com-
putable bounds on the asymptotic and nonasymptotic rates
for magic state distillation. For some example distillation
tasks, we compare our bounds to other recent results [47]
and find they are much tighter across a wide parameter
regime.

Classical simulation of quantum systems has been stud-
ied within various contexts other than magic theory [6,20,
31,48,49], but to our knowledge none of these approaches
have been adapted to the umbrella of quantum resource
theories [50]. We provide a comprehensive recipe to apply
our methodology to general quantum resources. We thus
establish connections between a family of resource mono-
tones and simulation tasks, shedding light on classical
simulation algorithms in broader settings. For instance,

in the resource theory of quantum coherence [51,52], the
�1 norm of coherence is a fundamental quantifier of this
resource but lacks an operational meaning. Our results
fill this gap by showing that the �1 norm of coherence
quantifies the runtime of classical simulation within this
theory.

This paper is structured as follows. In Sec. II we intro-
duce the setting of magic theory and our family of mono-
tones. Section II also discusses how the monotones connect
with our simulation algorithms, providing a statement of
our main theorems. In Sec. III we present a complete pic-
ture of how our monotones compare for single-qubit states
by showing that they are all equal. The equality between
monotones is then extended in Sec. IV to tensor-product
states, where we show that the monotones are strongly
multiplicative. In Sec. V we compare our new monotones
with the robustness of magic and show that they can be
exponentially smaller in magnitude. In Sec. VI, we discuss
how the monotones can be used to bound the performance
of magic state distillation protocols. Section VII contains
a complete discussion of our simulation algorithms—we
focus on providing an intuitive picture through illustrative
examples and sketches of the main proof ideas, with the
full technical details deferred to the appendix. We conclude
in Sec. VIII with a discussion of our underlying assump-
tions and the extension of our results to resource theories
beyond magic.

II. PRELIMINARIES

A. The stabilizer formalism

Here, we briefly review the stabilizer formalism. The
single-qubit Pauli group P1 contains the identity matrix
1, the Pauli spin matrices X , Y, and Z, as well as their
products with ±i1. We say a pure, single-qubit state is a
stabilizer state if there exists a Pauli operator P ∈ P1, such
that P|ψ〉 = |ψ〉 and P �= 1. There are six such states:

Z|0〉 = |0〉,
(−Z)|1〉 = |1〉,
±X |±〉 = |±〉 := (|0〉 ± |1〉)/

√
2,

±Y|±i〉 = |±i〉 := (|0〉 ± i|1〉)/
√

2.

(1)

The n-qubit Pauli group Pn is the group generated by ten-
sor products of n Pauli operators. We say a pure, n-qubit
state is a stabilizer state if there exists an Abelian subgroup
of the Pauli group S ⊂ Pn containing 2n elements such that
S|ψ〉 = |ψ〉 for all S ∈ S . The group S is called the stabi-
lizer group of the state |ψ〉, and that S can be described
using O(n2) bits, underpinning the efficient classical sim-
ulation results of the Gottesman-Knill theorem. We use Sn
to denote the set of pure n-qubit stabilizer states. The set
of mixed stabilizer states S̄n is then formed by all states,
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which can be decomposed as a mixture of pure stabilizers,
that is, S̄n = conv{|φ〉〈φ| : |φ〉 ∈ Sn}.

An n-qubit unitary C is Clifford if for every Pauli P ∈
Pn, it follows that CPC† ∈ Pn. We see that stabilizer states
are mapped to stabilizer states under Clifford unitaries, and
furthermore this update can be tracked efficiently. In addi-
tion, measurements of Pauli operators on stabilizer states
can also be efficiently simulated by appropriately updating
the stabilizer group.

We refer to the stabilizer operations as any sequence
of the following: preparation of stabilizer states, Clifford
unitaries, Pauli measurements, and adaptive feedforward
depending on previous measurement outcomes or random
coin tosses. From the perspective of complexity theory, a
small caveat is required that adaptive feedforward deci-
sions are computed using only a small (constant size)
classical computer.

A quantum channel E is said to be stabilizer preserving
if it maps every mixed stabilizer state ρ ∈ S̄n to another
mixed stabilizer state, so E(ρ) ∈ S̄n. Although meaningful
when acting on the whole system in consideration, such
maps can exhibit undesirable properties when acting on a
part of a larger system [22]. We thus consider a relevant
class of free operations defined as follows.

Definition 1. We define the set of free operations On
as the set of channels E that are (i) completely posi-
tive; (ii) trace preserving, so that Tr[E(ρ)] = Tr[ρ]; (iii)
completely stabilizer preserving, in the sense that

[E ⊗ 1](ρ) ∈ S̄2n ∀ρ ∈ S̄2n. (2)

This set can equivalently be defined via the Choi-
Jamiołkowski isomorphism as was shown in Ref. [22,
Theorem 3.1].

While it is clear that the stabilizer operations are con-
tained in On, it is not known whether all elements of
On can be realized by the standard stabilizer operations
without postselection. The Gottesman-Knill theorem has
long been known to show that stabilizer operations can
be efficiently classically simulated, but only recently was
it shown that the more general class On also admits effi-
cient simulation algorithms [22]. Furthermore, it is known
that certain stabilizer-preserving but non-trace-preserving
maps, such as postselection on the outcome of a Pauli mea-
surement, can also be efficiently simulated. For technical
reasons we do not consider these as elements of the con-
vex set of free operations On in our resource theory, but we
exploit their simulability in Sec. VII.

While the stabilizer operations (or the free operations
On) are not universal for quantum computation, they can
be promoted to universality given an unlimited supply of a
suitable nonstabilizer operation. For instance, adding the T

gate (also called the π/8 phase gate)

T =
(

eiπ/8 0
0 e−iπ/8

)
, (3)

promotes the stabilizer operations to full quantum uni-
versality [53]. Alternatively, one can add a supply of
nonstabilizer states such as the so-called magic states:

|H 〉〈H | = (1/2)
[
1 + (X + Z)/

√
2
]

, (4)

|T〉〈T| = (1/2)
[
1 + (X + Y)/

√
2
]

, (5)

|F〉〈F| = (1/2)
[
1 + (X + Y + Z)/

√
3
]

, (6)

which we use throughout. Given a single copy of the
Hadamard eigenstate |H 〉 or the Clifford equivalent T state
|T〉, we can perform a deterministic T gate using state
injection [17]. Therefore, full university can be achieved
given stabilizer operations and a supply of magic states.
This is an important paradigm as it is the route most
commonly used in the design of fault-tolerant quantum
computers.

However, stabilizer operations with access to a restricted
number of magic states do not lead to universal quantum
computation. Rather, the computational power depends on
the type and quantity of magic states provided. It is pre-
cisely this question of computational power that we quan-
tify by studying the complexity of simulating computations
with a limited resource of magic states.

B. Magic monotone definitions

We now introduce several magic monotones of interest,
borrowing some results from the general resource-theory
literature. Although in our discussion we specialize to the
theory of magic states, the basic considerations below can
also be applied to more general resources in which the
set of free states is defined by convex combinations of
free pure states, which includes important examples such
as coherence and entanglement. We elaborate on this in
Sec. VIII.

For pure states, we define the following.

Definition 2 ([25]). The pure-state extent ξ is the quantity

ξ(
) := min{‖c‖2
1 : |
〉 =

∑
j

cj |φj 〉; |φj 〉 ∈ Sn}. (7)

In magic theory, ξ is the stabilizer extent [25]. A related
quantity appears in other resource theories such as entan-
glement, where it admits an analytical formula as the
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squared sum of the Schmidt coefficients of a state [54], or
in coherence theory, where it is the square of the �1 norm
of coherence [51]. It is well known [25,55] that this can be
recast as a dual optimization problem

ξ(
) := max
{|〈ω|
〉|2 : |〈ω|φ〉| ≤ 1 ∀|φ〉 ∈ Sn

}
. (8)

Here, we define an ω witness to be any feasible solution to
the optimization problem in Eq. (8).

We now consider four monotones, of which three can
be regarded as mixed-state extensions of ξ . First, one can
extend the extent to mixed states using a convex roof
extension [56].

Definition 3. The mixed-state extent � is the quantity

�(ρ) := min

⎧⎨
⎩
∑

j

pj ξ(
j ) : ρ =
∑

j

pj |
j 〉〈
j |
⎫⎬
⎭ ,

where every |
j 〉 is a pure state and pj are non-negative
coefficients such that

∑
j pj = 1. Furthermore, if the min-

imum can be achieved with a decomposition where all
ξ(
j ) are equal, then we say the state admits an equimag-
ical decomposition.

We also consider quasiprobability distributions over free
states as follows.

Definition 4 ([21]). The robustness R is the quantity

R(ρ) := min

⎧⎨
⎩‖q‖1 : ρ =

∑
j

qj |φj 〉〈φj |; |φj 〉 ∈ Sn

⎫⎬
⎭ ,

where qj are real coefficients.

In magic theory, R is called the robustness of magic
[21,41], inspired by the (standard) robustness of entangle-
ment [57]. This quantity is precisely the negativity with
respect to the frame defined by the set of pure-state stabi-
lizer projectors. In particular, the robustness uses decom-
positions where the rank-one ket-bra terms are Hermitian.
Relaxing this, we have the following definition.

Definition 5. The dyadic negativity  is the quantity

(ρ) := min

⎧⎨
⎩‖α‖1 : ρ=

∑
j

αj |Lj 〉〈Rj |; |Lj 〉, |Rj 〉 ∈ Sn

⎫⎬
⎭,

where the coefficients αj are complex numbers.

The name reflects the fact that each |Lj 〉〈Rj | comprises
of a pair of vectors, and so is a dyad. Within the resource

theory of entanglement, a related quantity called the pro-
jective tensor norm was considered [54,58], and in the
resource theory of coherence the dyadic negativity cor-
responds to the �1 norm of coherence [51]. Viewing this
quantity as the primal solution of a convex optimization
problem, it is useful to state the equivalent dual formula-
tion [55] in terms of witness operators. We define the set
of W witnesses, denoted W , to be the Hermitian operators
such that

W := {W : |〈L|W|R〉| ≤ 1 ∀ |L〉, |R〉 ∈ Sn}, (9)

which by strong duality leads to

(ρ) = max{Tr[Wρ] : W ∈ W}. (10)

This brings us to our last monotone of interest.

Definition 6. The generalized robustness + is the quan-
tity

+(ρ) = max{Tr[Wρ] : W ∈ W ; W ≥ 0}, (11)

where W is the set of W witnesses.

A corresponding quantity to + was first defined in
entanglement theory [57,59] and appears in many resource
theories.

Notice that this is similar to the dual formulation given
in Eq. (10) except we further restrict to witnesses that are
also positive semidefinite operators. We define a W+ wit-
ness to be any feasible solution to the optimization problem
in Eq. (11). Since W+ witnesses are positive semidefinite,
the condition |〈L|W|R〉| ≤ 1 simplifies to 〈ψ |W|ψ〉 ≤ 1 for
all |ψ〉 ∈ Sn.

Furthermore, the primal form of this monotone is

+(ρ) = min{λ : ρ ≤ λσ , σ ∈ S̄n} (12)

= min
{
λ ≥ 1 :

ρ + (λ− 1)ρ ′

λ
∈ S̄n

}
, (13)

where the optimization in the second line is over all density
matrices ρ ′. This form motivates the name of generalized
robustness: rearranging Definition 4, the robustness R can
be similarly expressed as

R(ρ)+ 1
2

= min
{
λ ≥ 1 :

ρ + (λ− 1)σ
λ

∈ S̄n, σ ∈ S̄n

}
,

(14)

where now the states in the optimization are restricted to
free states in S̄n.
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We stress that both  and + are computable, in the
sense that their evaluation corresponds to convex opti-
mization problems—a second-order cone program for ,
and a semidefinite program for +—which can be eval-
uated using numerical solvers [60]. In practice, we are
able to compute + up to n = 4 and  up to n = 3, but
one can certainly hope to make further progress in com-
puting the quantities for states obeying some symmetry,
just as in the case of R [41]. The evaluation of convex
roof–based quantities such as � is notoriously hard in
general [61], although one could again use symmetry to
facilitate it in special cases [62]. Our results in Secs. III–IV
further simplify the computation of all of the monotones
for the practically important case of tensor products of
single-qubit states.

The monotones have been considered from the per-
spective of general resource theories [55], and in partic-
ular they have been shown to satisfy a number of useful
properties:

1. faithfulness: M(ρ) = 1 if and only if ρ ∈ S̄n;
2. monotonicity: M(ρ) ≥ M[O(ρ)] for any free oper-

ation O ∈ On;
3. strong monotonicity (monotonicity on average

under selective free measurements):

M(ρ) ≥
∑

i

piM
(

KiρK†
i

pi

)
, (15)

where {Ki}i are the Kraus operators of a quan-
tum channel such that each Ki is stabilizer pre-
serving, i.e., Ki|φ〉 ∝ |φ′〉 ∈ Sn ∀ |φ〉 ∈ Sn, and pi =
Tr(KiρK†

i );
4. convexity: M(

∑
j pj ρj ) ≤ ∑

j pjM(ρj );
5. submultiplicativity: M(⊗j ρj ) ≤ ∏

j M(ρj ).

We remark that, although R and + are monotones in
any convex resource theory, the fact that  and � obey
monotonicity under all completely stabilizer-preserving
operations On is a consequence of two properties: the
strong monotonicity of the measures [55] coupled with
the fact that any operation O ∈ On can be expressed in
terms of Kraus operators {Ki}i, which preserve the set of
stabilizer states [22]. If we instead work with logarithmic
monotones, Mlog(ρ) = log[M(ρ)] then multiplicativity
becomes additivity, faithfulness instead has a Mlog(ρ) = 0
condition, and due to concavity of the logarithm Mlog is no
longer a convex function but still obeys strong monotonic-
ity [63]. Here we find it convenient to work without the
logarithm in most cases.

Next, we present some general relations between these
monotones that are reminiscent of known results in general
resource theories [55].

Lemma 1 ([55]). For any pure state

+(|
〉〈
|) = (|
〉〈
|) = �(|
〉〈
|) = ξ(
). (16)

Therefore, our monotones can be interpreted as mixed-
state extensions of ξ . We also observe the following.

Theorem 2. For any state ρ we have

+(ρ) ≤ (ρ) ≤ �(ρ). (17)

For completeness, we provide alternative proofs of these
results in Appendix A1. Since + is often easier to eval-
uate than  and + ≤ , in practical settings, one can
approximate  by evaluating +.

C. Connecting monotones with simulation

To further motivate our investigation of the magic
monotones that follows in the subsequent sections, we
summarize our main results and show how the properties
of the monotones will be vital to the understanding of sev-
eral classes of classical simulation algorithms. Our first
simulation algorithm is a quasiprobability-based approach,
which introduces several novel modifications to standard
Monte Carlo techniques, notably the use of dyadic frames.

Theorem 14 (informal). Consider an n-qubit initial state
with known decomposition into dyads ρ = ∑

j αj |Lj 〉〈Rj |
where ‖α‖1 = (ρ). Let E be a sequence of T stabilizer-
preserving operations, each acting on a few qubits. Then,
given a stabilizer projector �, we can estimate the Born-
rule probability μ = Tr(�E[ρ]) with probability 1 − pfail
and additive error ε within a runtime

(ρ)2

ε2 log(p−1
fail)Tpoly(n). (18)

Hence, the dyadic negativity exactly characterizes our
algorithm’s runtime. To understand how the performance
scales when more copies of the input state ρ are provided,
it is then necessary to understand the multiplicativity of.
We solve this question completely with the following.

Theorem 10. Let σj be single-qubit states. Then

(⊗j σj ) = �(⊗j σj ) = +(⊗j σj ) =
∏

j

+(σj ). (19)

This not only reveals a connection between three mono-
tones introduced previously—allowing, for instance, for
the evaluation of the generally hard-to-compute quanti-
fier �—but also shows them to be strictly multiplicative
for qubit states. Consequently, when we plot these quanti-
ties on a log scale, we get a straight line, as shown with
the example in Fig. 1. Although a common occurrence
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FIG. 1. The scaling of magic monotones for many copies of
a noisy single-qubit magic state ρ, highlighting several of our
results. Our new monotones, +(ρ⊗n), (ρ⊗n), and �(ρ⊗n)

are proved to be equal with multiplicative scaling leading to a
straight line (gray) on this logarithmic scale (due to Theorem 10).
We contrast this with a previously studied monotone, the robust-
ness of magic R, for which we can numerically compute the
value up to n = 5 (shown as purple data points). For n > 5, the
shaded purple region shows the possible values of R as enforced
by upper bounds (due to sub-multiplicativity) and two lower
bounds (Lemma 11 and Theorem 12). The robustness of magic
has a wide range of possible values, but even the lower bound
grows exponentially faster than the value of our new monotones,
entailing that classical simulation algorithms based on the new
monotones offer an improvement in the exponential scaling of
their runtime.

in the structurally simpler theory of qudit magic states
[35,64], multiplicativity has not been shown before for any
mixed-state monotone in qubit magic theory.

Theorem 10 lets us avoid the main problem, which
hinders an understanding of the performance of previ-
ous quasiprobability simulation algorithms such as the
Howard-Campbell simulator based on the robustness R,
namely the inability to efficiently compute R(ρ⊗n) for
large n [21,41]. In addition, we can use the multiplicativ-
ity result to show an exponential separation between our
monotones and the robustness of magic.

Theorem 12. Given any single-qubit nonstabilizer state ρ,
there exists positive real constants α and β where α > β

and so that

2αn ≤ R(ρ⊗n), (20)

2βn = (ρ⊗n) = +(ρ⊗n) = �(ρ⊗n). (21)

This establishes the simulation algorithm of Theorem
14 as polynomially faster than previous quasiprobability
simulators, as illustrated by the example in Fig. 1.

Our second simulation algorithm is based on the stabi-
lizer rank, which allows it to be used for both Born-rule
probability estimation and for approximately sampling

from the output distribution of a quantum circuit. Impor-
tantly, existing stabilizer-rank simulation algorithms only
applied to pure states [23,25]. We extend this to mixed
states through the monotone � as follows.

Theorem 19 (informal). Let ρ be a state with known
mixed-state extent decomposition. Then there is a classical
algorithm that approximately samples from the probability
distribution associated with a sequence of Pauli measure-
ments on ρ. Our samples come from a distribution that
is δ-close in �1 norm to the actual distribution, and each
sample has an expected runtime

E(T) = O[�(ρ)/δ3] (22)

as long as δ is not too small. Furthermore, if ρ is a product
of single-qubit states, there is no variance in the runtime.

There are two notable technical advances here: one is a
factor 1/δ improvement in runtime over previous simula-
tors of this type [25], even when applied to pure states; the
other improvement is the rather surprising result that sam-
pling can often be performed without any variance in the
runtime.

The last of our simulation algorithms is the constrained
path simulator, which enjoys an efficient runtime, but
instead sacrifices the accuracy of the simulation depending
on how resourceful the input state is. The precision has an
inverse polynomial dependence on the generalized robust-
ness+, again directly connecting a magic monotone with
classical simulation.

We thus see that the tightness of our simulators’ run-
times and our ability to sharply characterize them is inher-
ited from the properties and characterization of the mono-
tones introduced earlier. We overview the connections
between the monotones and our simulation algorithms in
Table I. The detailed derivation of the theorems, as well
as additional results—including connecting the monotones
with magic distillation rates—all follow in the remainder
of the paper.

III. SINGLE-QUBIT MAGIC STATES

In this section, we present a complete description of our
magic monotones for single-qubit states. Recalling from
Theorem 2 that the monotones in general obey the relation
�(ρ) ≥ (ρ) ≥ +(ρ), the key question is then whether
the inequalities can be tight, thus unifying the different
approaches to the quantification of magic. We answer this
in the affirmative.

Theorem 3. For any single-qubit state ρ, we have

+(ρ) = (ρ) = �(ρ), (23)

and furthermore ρ admits an equimagical decomposition
(recall Definition 3).
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We see in the following section that this equivalence
persists for tensor products of single-qubit states.
However, equality does not extend to general n-qubit states
for n ≥ 2, as numerically we find that +(ρ) < (ρ) for
most random two-qubit density matrices ρ. The proof of
Theorem 3 rests on a trio of lemmata. First, we have the
following.

Lemma 4 (The monotone equality lemma). For any ω wit-
ness |ω〉, we define the set Bω to be the convex hull of all
pure states 
 for which |〈ω|
〉|2 = ξ(
). It follows that
for all ρ ∈ Bω we have

+(ρ) = (ρ) = �(ρ) = 〈ω|ρ|ω〉. (24)

Proof of Lemma 4. If ρ ∈ Bω, we can find a convex
decomposition

ρ =
∑

j

pj |
j 〉〈
j |, (25)

where |〈ω|
j 〉|2 = ξ(
j ) for all j . We can use this decom-
position to obtain an upper bound on the mixed-state extent
as follows:

�(ρ) ≤
∑

j

pj ξ(
j )

=
∑

j

pj 〈ω|
j 〉〈
j |ω〉

= 〈ω|ρ|ω〉. (26)

On the other hand, W = |ω〉〈ω| ∈ W+ and so can be used
to lower bound the generalized robustness to show

〈ω|ρ|ω〉 ≤ +(ρ). (27)

Combining Eqs. (26) and (27) with Theorem 2, we have

〈ω|ρ|ω〉 ≤ +(ρ) ≤ (ρ) ≤ �(ρ) ≤ 〈ω|ρ|ω〉. (28)

Therefore, these inequalities all collapse to equalities. �
Making use of Lemma 4 requires us to first understand

the structure of optimal ω witnesses, which we discuss
soon. However, first it is useful to define some different
subsets of the Bloch sphere.

Definition 7. The positive octant is the set

P := {ρ : 〈X 〉, 〈Y〉, 〈Z〉 ≥ 0}. (29)

We further subdivide the positive octant as follows:

z

x

y

|0

|+
|+i

|H

mixed
stabilizer states

|F

q = 2/3q > 2/3

FIG. 2. The region PY, which is a third of the positive octant.
The dotted lines show the pure states at boundaries PY ∩ PX , and
PY ∩ PZ . For these boundary states, we know (by Lemma 6) that
the optimal ω witness is given by Eq. (32) with the parame-
ter set to q = √

2/3. For other pure states in PY, the ω witness
still has the form given by Eq. (32) but the parameter q may be
greater than

√
2/3. However, interestingly, the majority of pure

states in PY have an optimal ω witness with q = √
2/3 and these

are shown in yellow in this plot. On the geodesic through |0〉,
|H 〉, and |+〉, we have that q = 1. Between this geodesic and the
yellow region, q varies continuously from 1 to

√
2/3 and this

intermediate region is shown in green.

PX := {ρ : ρ ∈ P, 〈X 〉 ≤ 〈Y〉, 〈X 〉 ≤ 〈Z〉},
PY := {ρ : ρ ∈ P, 〈Y〉 ≤ 〈X 〉, 〈Y〉 ≤ 〈Z〉},
PZ := {ρ : ρ ∈ P, 〈Z〉 ≤ 〈X 〉, 〈Z〉 ≤ 〈Y〉},

(30)

where we use the shorthand 〈M 〉 := Tr[ρM ]. See Fig. 2
for an illustration of PY.

The sets PX , PY, and PZ further divide the positive octant
into thirds and it is easy to verify that P = PX ∪ PY ∪ PZ .
These sets are not quite disjoint because of the following
proposition.

Proposition 5. From Definition 7, we have the following:

PZ ∩ PY = {ρ : ρ ∈ P, 〈Z〉 = 〈Y〉 ≤ 〈X 〉},
PX ∩ PZ = {ρ : ρ ∈ P, 〈X 〉 = 〈Z〉 ≤ 〈Y〉},
PX ∩ PY = {ρ : ρ ∈ P, 〈X 〉 = 〈Y〉 ≤ 〈Z〉}.

This is straightforward to prove. For example, in PZ the
smallest expectation value is for Z and for PY the smallest
expectation value is for Y. Therefore, in the intersection
these two expectation values must be equal. We note that
any state is Clifford equivalent to a state in the positive
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octant P. Furthermore, the Clifford

F := 1√
2

(
1 −i
1 i

)
, (31)

satisfies FXF† = Y, FYF† = Z, and FZF† = X . There-
fore, the sets PX , PY, and PZ are Clifford equivalent and
therefore every state is Clifford equivalent to some ρ ∈ PY.

Now we are ready to characterize optimal ω witnesses.

Lemma 6. Let |
〉 be any pure, single-qubit nonstabilizer
state in the set PY. Then the ω witness |ω〉 that achieves
|〈
|ω〉|2 = ξ(
) has an operator representation of the
form

|ω〉〈ω| = 1 + qH +
√

1 − q2Y

1 + q/
√

2
, (32)

where
√

2/3 ≤ q ≤ 1 and H = (X + Z)/
√

2. Further-
more, if |
〉 is in the set PY ∩ PX or PY ∩ PZ then q =√

2/3 and the ω witness takes the form

|ω〉〈ω| = 1 + (X + Y + Z)/
√

3

1 + 1/
√

3
. (33)

The actual value of the variable q is easy to numerically
compute, but is analytically complicated and not instruc-
tive to present. Rather, in Fig. 2, we illustrate the region PY
and highlight where q = √

2/3 and q >
√

2/3.

Proof of Lemma 6. We begin by observing that for any
|
〉 there exists a decomposition into stabilizer states such

that |
〉 = ∑
j cj |φj 〉 and ξ(
) =

(∑
j |cj |

)2
. Given an

optimal ω witness we have

ξ(
) = |〈ω|
〉|2 =
∣∣∣∑

j

cj 〈ω|φj 〉
∣∣∣2. (34)

Therefore,

⎛
⎝∑

j

|cj |
⎞
⎠

2

=
∣∣∣∑

j

cj 〈ω|φj 〉
∣∣∣2. (35)

Given that |〈ω|φj 〉| ≤ 1, the above equality can only hold
if |〈ω|φj 〉| = 1 for every j with |cj | > 0. In particular, if

 is a nonstabilizer state it must have at least two nonzero
cj terms, and there must exist at least two stabilizer states
such that |〈ω|φj 〉| = 1. We return to use this fact shortly.

Using the set of Pauli matrices as a basis

|ω〉〈ω| = λ(1 + qxX + qyY + qzZ), (36)

where the coefficients qx, qy , and qz are real. Since |ω〉〈ω|
is a rank-1 operator we know

q2
x + q2

y + q2
z = 1, (37)

and since |ω〉〈ω| is a positive operator we have λ > 0.
Given a valid ω witness, we can always obtain another
valid ω witness by permuting any of {qx, qy , qz} or chang-
ing the signs. Therefore, the optimal ω witness for a state
in the set PY has qx ≥ qy and qz ≥ qy , since this order-
ing maximizes |〈
|ω〉|2. This means that the two stabilizer
states with the largest overlap with |
〉 are |+〉 and |0〉.
We show earlier there must be at least two stabilizer
states for which |〈ω|φj 〉| = 1, so we conclude |〈ω|+〉| = 1
and |〈ω|0〉| = 1. It follows that qx = qz and we define
q := √

2qx = √
2qz. Condition Eq. (37) implies that qy =√

1 − q2 so we show that the optimal ω witness has the
form

|ω〉〈ω| = λ

(
1 + q

X + Z√
2

+
√

1 − q2Y
)

. (38)

Furthermore, |〈ω|+〉| = 1 implies that

λ = (1 + q/
√

2)−1. (39)

Lastly, we note that the condition |〈ω|+i〉| ≤ 1 entails that
q ≥ √

2/3. Therefore, we know the form of the ω witness
in the set PY and prove that

√
2/3 ≤ q ≤ 1. Next, consider

the special case when the state is at an intersection, such as
PY ∩ PZ . Then, the optimal ω witness has the above form
determined for the region PY. However, the region PZ only
differs by an F rotation, so the optimal ω witness must have
a similar form but with the Pauli operators permuted, so
that

|ω〉〈ω| =
(
1 + p Y+X√

2
+
√

1 − p2Z
)

2(1 + p/
√

2)
. (40)

The only way Eqs. (32) and (40) can both be true, is if
q = p = √

2/3. A similar argument holds for PY ∩ PX and
this proves Lemma 6. �

Our third lemma shows that every mixed state is con-
tained in an appropriate convex set.

Lemma 7. For any single-qubit nonstabilizer state ρ,
there exists a ω witness |ω〉 such that ρ ∈ Bω (as defined
in Lemma 4).
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This implies that for single-qubit states we can leverage
Lemmas 4 and 6 to prove Theorem 3.

Proof of Lemma 7. We consider individual slices of the
Bloch sphere such that Tr[ρσF ] = f where σF = (X +
Y + Z)/

√
3 and f is equal to the inner product between the

Bloch vectors representing ρ and σF . A particular f value
specifies a slice through the Bloch sphere. Let us denote Sf
as the set of all states inside this slice. For every nonstabi-
lizer state in the positive octant we have 1/

√
3 ≤ f , and

for all normalized states we have f ≤ 1. Within this slice
there are three special, pure states, which are

|
X
f 〉〈
X

f | := 1
2
(1 + aY + aZ +

√
1 − 2a2X ),

|
Y
f 〉〈
Y

f | := 1
2
(1 + aX + aZ +

√
1 − 2a2Y),

|
Z
f 〉〈
Z

f | := 1
2
(1 + aY + aX +

√
1 − 2a2Z),

(41)

where a obeys

√
3f = 2a +

√
1 − 2a2. (42)

For 1/
√

3 ≤ f ≤ 1, there is a unique a such that a ∈
[0, 1/

√
3] and

√
1 − 2a2 ∈ [1/

√
3, 1]. Crucially, these

states are the unique pure states of the following set
intersections.

|
X
f 〉〈
X

f | ∈ Sf ∩ PY ∩ PZ ,

|
Y
f 〉〈
Y

f | ∈ Sf ∩ PX ∩ PZ ,

|
Z
f 〉〈
Z

f | ∈ Sf ∩ PX ∩ PY.

(43)

Referring back to Proposition 5, it is clear that these states
must have the form given in Eq. (41).

Notice that these special states are Clifford rotations of
each other. By Lemma 6 these three special states all have
the same optimal ω witness given by Eq. (33). Since they
share their optimal ω witness, Lemma 4 applies to all con-
vex combinations of states {
X

f ,
Y
f ,
Z

f } as illustrated in
Fig. 3. Note that {
X

f ,
Y
f ,
Z

f } all have the same value for
the extent, since

ξ(
X
f ) = ξ(
Y

f ) = ξ(
Z
f ) = 1 + f

1 + 1/
√

3
. (44)

Therefore, for these states, a mixture of states with the
same amount of magic achieves the optimal convex-roof
extension. That is, each of these states admit an equimagi-
cal decompositions.

Next, we consider mixed states outside the convex
hull of {
X

f ,
Y
f ,
Z

f } and inside PY ∩ Sf as illustrated in

FIG. 3. A slice Sf through the positive octant. States are
parameterized by the coordinates {rA, rB, rF} as defined in
Eq. (46). For the slice Sf we have rF = f for some constant
f . The axes for the {rA, rB} coordinates are shown in red. The
slice is divided into thirds corresponding to the sets defined
in Definition 7 with the intersections of these sets shown with
dashed lines. Where these intersections meet the pure states we
label the pure states {
X

f ,
Y
f ,
Z

f } defined in Eq. (43), and the
purple triangle denotes the convex hull of the set {
X

f ,
Y
f ,
Z

f }.
States outside this convex set are considered as a mixture of two
pure states |�±

ρ 〉, defined in Eq. (49) and shown with green dots.

Fig. 3. We define a set of linearly independent, Hermitian
operators

σA = X + Z − 2Y√
6

, σB = X − Z√
2

, (45)

and σF as defined earlier. The set {σA, σB, σF} is unitarily
equivalent to {X , Y, Z}, so every state can be decomposed
as

ρ = (1 + rAσA + rBσB + rFσF) /2, (46)

where inside the slice Sf we have rF = f . The variables
rA and rB are used for the coordinate system in Fig. 3.

Given a mixed state ρ, we can define a pair of pure states
�+
ρ and �−

ρ , such that

〈�±
ρ |σA|�±

ρ 〉 = Tr[σAρ] = rA,

〈�±
ρ |σF |�±

ρ 〉 = Tr[σFρ] = f ,
(47)

and the states are pure, so that

〈�±
ρ |σA|�±

ρ 〉2 + 〈�±
ρ |σB|�±

ρ 〉2 + 〈�±
ρ |σF |�±

ρ 〉2 = 1.
(48)

There are two possible solutions for 〈�±
ρ |σB|�±

ρ 〉, which
leads to

|�±
ρ 〉〈�±

ρ | = 1
2

(
1 + rAσA ±

√
1 − r2

A − f 2σB + f σF

)
.

(49)
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By construction, ρ is a convex combination of �+
ρ and

�−
ρ . The geometry is illustrated in Fig. 3, where the pair

of purified states are shown as green dots with ρ located
on the line between them. To deploy Lemma 4, it remains
to prove that �±

ρ share an optimal ω witness.
The states �±

ρ are both in the region PY, which can be
seen from the geometry on Fig. 3 though we also give an
algebraic proof in Appendix B. Due to �±

ρ ∈ PY, we can
use Lemma 6 to determine the form of their optimal ω wit-
nesses. In Lemma 6, the witness ω(q) had a free parameter
q that we had to maximize over. Since 〈ω(q)|σB|ω(q)〉 = 0
for any q value, we have

〈ω(q)|ρ|ω(q)〉 = |〈�+
ρ |ω(q)〉|2 = |〈�−

ρ |ω(q)〉|2. (50)

Performing the maximization over q, the optimal q value
is the same for �+

ρ and �−
ρ due to Eq. (50). Therefore, �±

ρ

share exactly the same optimal ω witness. This completes
the proof of Lemma 7 and thus also of Theorem 3. �

IV. MULTIPLICATIVITY

We now study the behavior of the monotones �, , and
+ for tensor products of states. It was found by Bravyi
et al. [25] that ω witnesses of small dimension are closed
under tensor products, formalized as follows.

Theorem 8 ([25]). Let |ωj 〉 be vectors from a one-, two-,
or three-qubit Hilbert space such that each ωj is an ω
witness. Then |�〉 := ⊗j |ωj 〉 is an ω witness.

This is a rewording of Corollary 1 and Corollary 3 of
Ref. [25]. From the above result, Ref. [25] further showed
that the extent is multiplicative for such tensor products.

Theorem 9 ([25]). Let |ψj 〉 be one-, two-, or three-qubit
states. Then

ξ(⊗j |ψj 〉) =
∏

j

ξ(|ψj 〉). (51)

Here, we give a related multiplicativity result for several
mixed-state monotones.

Theorem 10. Let σj be single-qubit states. Then

(⊗j σj ) = �(⊗j σj ) = +(⊗j σj ) =
∏

j

+(σj ), (52)

and furthermore ⊗j σj admits an equimagical decomposi-
tion (recall Definition 3).

Prior to this work, there were no known strict multiplica-
tivity results for resource monotones for mixed states in
qubit magic theory. For instance, Howard and Campbell

[21] found that the robustness of magic can be strictly
submultiplicative, R(ρ ⊗ ρ) < R(ρ)2 for all nonstabilizer
ρ considered, and we discuss this later in this section.
There does exist a multiplicative lower bound on the
robustness of magic, proved using the so-called stabi-
lizer norm [21]. However, the lower bounds and upper
bounds appear to always be loose and so we have no
strict multiplicativity results. Additionally, Raussendorf
et al. [40] introduced a qubit-based phase-space robustness
RPS that can behave strictly supermultiplicatively, so that
RPS(ρ ⊗ ρ) > RPS(ρ)

2 for some ρ. It is natural to wonder
if Theorem 9 or Theorem 10 could extend to a tensor prod-
uct of states with arbitrary dimension. However, in the final
stages of completing this work, it was proved that this can-
not hold in full generality [46]. It remains an open question
whether the monotones satisfy multiplicativity for states
composed of a low number of qubits, mirroring the multi-
plicativity of the extent; indeed, numerical results suggest
that + is also multiplicative for mixed two-qubit states.

Proof of Theorem 10. From the definition of � we see
that it is manifestly submultiplicative. Combining this
observation with Theorem 3 we have that

�(⊗j σj ) ≤
∏

j

�(σj ) =
∏

j

+(σj ) (53)

holds for all products of single-qubit states. Strengthen-
ing this to strict equality requires us to find a matching
lower bound. The proof of Theorem 3 establishes that for
every single-qubit state the optimal W+ witness has the
form |ωj 〉〈ωj | where ωj is an ω witness. By Theorem
8, |�〉 = ⊗|ωj 〉 is also an ω witness, and consequently
|�〉〈�| = ⊗|ωj 〉〈ωj | is a W+ witness that can be used to
lower bound + as follows:∏

j

+(σj ) = 〈�| ⊗j σj |�〉 ≤ +(⊗j σj ). (54)

Combining Eq. (53), Eq. (54), and Theorem 2 we obtain
∏

j

+(σj ) ≤ +(⊗j σj )

≤ (⊗j σj ) ≤ �(⊗j σj ) ≤
∏

j

+(σj ). (55)

Since the left- and rightmost quantities are the same, all
these inequalities must collapse to equalities.

It remains to show that these product states admit
equimagical decompositions. This is easily verified by tak-
ing an equimagical decomposition for each single qubit
state (existence ensured by Theorem 3) and using this to
construct the natural decomposition for the product state.
It then follows immediately from Theorem 9 that each pure
term has equal extent and by the above argument that this
is optimal with respect to the � monotone. �
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V. COMPARISON WITH ROBUSTNESS

Here we discuss how our new monotones scale com-
pared to the robustness of magic (recall Definition 4).
While +,, and � are often equal, the robustness of
magic is typically much larger, as formalized in the fol-
lowing result.

Lemma 11. For any density matrix ρ we have

R(ρ) ≥ 2+(ρ)− 1. (56)

Furthermore, if ρ is a single-qubit state this tightens to

R(ρ) ≥ (1 +
√

2)+(ρ)−
√

2. (57)

We remark that a similar result to Eq. (56) for  is
claimed in Refs. [55,58], but the proof contains an error.

However, because the robustness of magic is not multi-
plicative, Lemma 11 does not tell us much about how the
different monotones scale. For this, we observe that the gap
can scale exponentially.

Theorem 12. Given any single-qubit nonstabilizer state ρ,
there exists positive real constants α and β where α > β

and

2αn ≤ R(ρ⊗n), (58)

2βn = (ρ⊗n) = +(ρ⊗n) = �(ρ⊗n). (59)

For example, for the Hadamard |H 〉 state we show that this
holds with α = 0.271 553 and β = 0.228 443.

Proof of Lemma 11. The dual formulation of the robust-
ness of magic tells us that R(ρ) ≥ Tr[Rρ] for any R such
that |〈φ|R|φ〉| ≤ 1 for all |φ〉 that are stabilizer states. We
call such an operator an R witness. Note that an R witness is
not necessarily positive. Let W denote the W+ witness such
that +(ρ) = Tr[Wρ]. Now, we consider the operator

R = 2
1 − s

W − 1 + s
1 − s

1, (60)

where

s = minφ∈Sn〈φ|W|φ〉. (61)

Next, we show R is indeed an R witness. For any |φ〉 ∈ Sn,

〈φ|R|φ〉 = 2
1 − s

〈φ|W|φ〉 − 1 + s
1 − s

≤ 2
1 − s

− 1 + s
1 − s

= 1, (62)

where we use 〈φ|W|φ〉 ≤ 1. Using 〈φ|W|φ〉 ≥ s, we simi-
larly obtain

φR|φ〉 ≥ 2s
1 − s

− 1 + s
1 − s

= −1. (63)

Therefore, R is indeed an R witness and we can lower
bound the robustness as follows:

R(ρ) ≥ Tr[Rρ] = 2
1 − s

+(ρ)− 1 + s
1 − s

= [2+(ρ)− 1] − s
1 − s

, (64)

Since +(ρ) ≥ 1, the right-hand side is monotonically
increasing with s on the relevant range s ∈ [0, 1). This
prompts the question whether we can lower bound s. By
definition s ≥ 0 for any W+ witness and so Eq. (56) holds
in general. In the special case of single-qubit states, and
assuming for brevity that ρ ∈ PY, we know the optimal
witness has the form W = |ω〉〈ω| given by Lemma 6. Since
|0〉 has the largest possible overlap with |ω〉, it follows that
|1〉 must have the smallest possible overlap and one finds
that

〈1|W|1〉 = s = (1 − q/
√

2)/(1 + q/
√

2). (65)

Over the allowed range q ∈ [
√

2/3, 1], we have

s ≥ (1 − 1/
√

2)/(1 + 1/
√

2), (66)

for every optimal single-qubit W+ witness. Substituting
this into Eq. (64) gives Eq. (57). �

Proof of Theorem 12. The stab norm D has been shown to
provide a lower bound on the robustness of magic (see the
Supplemental Material of Ref. [21] and also Ref. [65]), so
that for any single-qubit nonstabilizer state ρ we have

D(ρ)n = D(ρ⊗n) ≤ D(ρ)n − 1
2n

1 − 1
2n

≤ R(ρ⊗n), (67)

where the stab norm of a single-qubit state is

D(ρ) = 1
2
(1 + |〈X 〉| + |〈Y〉| + |〈Z〉|). (68)

Defining α = log2(D(ρ)), we obtain Eq. (58). For instance
D(|H 〉〈H |) = 1.207 and so α = 0.271 553 for Hadamard
states.

Similarly, Eq. (59) holds due to Theorem 10 and set-
ting β := log2[(ρ)]. For instance, β = 0.228 443 for
Hadamard states. To show α > β in general, we need to
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show that D(ρ) > (ρ) for all nonstabilizer, single-qubit
states. We note that for a single-qubit we have

R(ρ) = |〈X 〉| + |〈Y〉| + |〈Z〉| (69)

for any nonstabilizer state. This can be shown by using
Eq. (67) to obtain a lower bound on R(ρ), with the corre-
sponding upper bound following from a simple quasiprob-
ability decomposition into stabilizer states. Therefore,
R(ρ) = 2D(ρ)− 1 and combining this with Lemma 11,
we get

D(ρ) ≥ 1 + √
2

2
+(ρ)−

(√
2 − 1
2

)
. (70)

This reveals that D(ρ) > +(ρ) whenever +(ρ) >
1. �

We further remark that the robustness of magic is not
multiplicative and the known upper bounds on R(ρ⊗n)

are loose compared to the lower bound in Eq. (58). For
instance, Heinrich and Gross [41] showed that for the
Hadamard state (or the equivalent T state) R(|H 〉〈H |⊗n) =
O(20.368 601n) and this is the best known upper bound.

VI. DISTILLATION AND ASYMPTOTIC RATES

We now consider the scenario of distillation—that is,
consuming many copies of an input resource state ρ to
prepare copies of some target state—and show how the
quantifiers we introduce characterize this task. Firstly, it is
easy to see using the multiplicativity of the magic mono-
tones , +, and � for single-qubit systems together with
their monotonicity that, whenever there exists a stabilizer
operation taking ρ⊗k → σ⊗m for some single-qubit ρ and
σ , we must have

k
m

≥ log(σ)
log(ρ)

, (71)

and analogously for the other magic monotones. This
already allows one to obtain insightful no-go results on the
transformations between stabilizer states and gate synthe-
sis, along the lines considered in Ref. [21] but without the
need to perform the difficult computation of the monotones
for many copies of a state.

However, in practical settings it is often desirable to
go beyond such exact transformations and consider pro-
tocols that allow for imperfect conversion. Our quantifiers
can yield bounds for the efficiency of more general distil-
lation protocols and their asymptotic rates. We focus on
the magic monotone + as it is the most efficiently com-
putable out of the three and gives us the tightest bounds. A
useful property of+ is its monotonicity on average under

general probabilistic protocols: specifically, we have [55]

+(ρ) ≥
∑

i

pi
+
[

Oi(ρ)

pi

]
, (72)

where each Oi is a stabilizer-preserving quantum operation
that need not preserve trace [i.e., Oi(σ ) ∝ ω ∈ S̄n ∀σ ∈
S̄n], the overall quantum operation

∑
i Oi preserves trace,

and pi = Tr[Oi(ρ)] denotes the probability that the input
state ρ is transformed to the output Oi(ρ).

The most general representation of a distillation protocol
is then an operation, which takes k copies of a given input
ρ to m copies of some desired pure output state ψ , up to
error ε in fidelity, and succeeding with probability p . All
such protocols are limited as follows.

Theorem 13. Let ρ be any n-qubit quantum state, and ψ
a pure state of at most three qubits. If there exists a proba-
bilistic (that is, not necessarily trace-preserving) stabilizer
operation taking ρ⊗k → pτ , where τ is a state such that
〈ψ⊗m|τ |ψ⊗m〉 ≥ 1 − ε, then it necessarily holds that

k ≥ log p + log(1 − ε)+ m log F(ψ)−1

log+(ρ)
(73)

and

k ≥ p
[

log(1 − ε)+ m log F(ψ)−1

log+(ρ)

]
, (74)

where F(ψ) = max|φ〉∈Sn |〈ψ |φ〉|2 denotes the stabilizer
fidelity [25].

The above establishes two bounds on the least number
of copies of ρ necessary to perform the distillation of ψ
up to the desired accuracy, characterizing the dependence
on the resources contained in both ρ (as quantified by +)
and in ψ (as quantified by stabilizer fidelity F). Note that
either of the two bounds can perform better, depending on
the values of the parameters (see Fig. 4).

Proof. By submultiplicativity of + we have +(ρ)k ≥
+(ρ⊗k). By monotonicity black under probabilistic
protocols [see Eq. (72)] we have +(ρ⊗k) ≥ p+(τ ).
Because |ψ〉〈ψ |⊗m/F(ψ⊗m) is a W+ witness and hence a
feasible solution to the dual form of +, we arrive at

+(ρ)k ≥ p Tr
[
τ

|ψ〉〈ψ |⊗m

F(ψ⊗m)

]

≥ p
1 − ε

F(ψ⊗m)
. (75)

If ψ is any single-qubit, two-qubit, or three-qubit pure
state, then F(ψ⊗m) = F(ψ)m (see Ref. [25] or Theorem
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FIG. 4. Comparison of the lower bounds for the number of copies k of the state ρ = α|H 〉〈H | + (1 − α)1/2 necessary to distill
m copies of |H 〉 with success probability p = 0.9 and output infidelity ε. In (a), we fix α = 0.75 and demonstrate that the bounds in
this paper can characterize distillation well in a range of physical error regimes even for a small number of target copies (m = 4),
providing a better bound than Ref. [47] down to ε ≈ 10−21. In (b), we show that the bounds substantially improve when m increases.
This suggests in particular that, even though the bound of Ref. [47] gets increasingly better as ε → 0 by construction, in practical
regimes its performance can be exceeded by considering a larger number of copies of the distillation target. We show this in (c) by
varying the input error parameter α with a fixed small output error of ε = 10−20 and 24 target copies m. Our bounds perform better
even in the regime of α close to 1, and their performance can be improved further by considering larger m. Note that our bounds apply
also to the pure-state case (α = 1), while the bound of Ref. [47] explicitly applies only to full-rank inputs.

8), and so

+(ρ)k ≥ p
1 − ε

F(ψ⊗m)
. (76)

Taking the logarithm, we get

k ≥ log+(ρ)
[
p(1 − ε)F(ψ)−m] , (77)

which is precisely Eq. (73). Alternatively, if we use log+
instead of + in the above derivation (noting that log+
also decreases on average under stabilizer protocols due
to concavity of the logarithm), we obtain the bound in
Eq. (74). �

Another bound of this kind, which also explicitly
depends on +(ρ) and F(ψ) but exhibits a different scal-
ing with respect to ε, was recently obtained in Ref. [47].
We compare the performance of the bounds in Fig. 4.

When p = 1, Eq. (76) recovers a related recent bound of
Ref. [66]. When ε = 0, we obtain a benchmark on the per-
formance of all distillation protocols that distill the target
exactly, but can fail with a certain probability:

k
mp

≥ log F(ψ)−1

log+(ρ)
. (78)

This was considered for odd-dimensional qudits in
Refs. [35,64] as the “distillation efficiency.”

Additionally, the ultimate constraints on the convert-
ibility between two states are often characterized in the
asymptotic limit, where we are interested in the best
achievable rate R(ρ → ψ) at which k copies of ρ can
be approximately converted to kR(ρ → ψ) copies of ψ ,
with the error ε of this conversion vanishing in the limit

k → ∞. Using Eq. (74) with p = 1, any such rate must
satisfy

R(ρ → ψ) ≤ log+(ρ)
log F(ψ)−1 , (79)

which gives a semidefinite programming upper bound on
the asymptotic rate of transformation between any state ρ
and a pure state ψ of at most three qubits.

States of interest in magic state distillation include |H 〉
and |F〉 [17]. These states obey a Clifford symmetry in the
following sense; we say a state |ψ〉 is Clifford symmet-
ric if there exists an Abelian subgroup Cψ of the Clifford
group such that (i) C|ψ〉 = |ψ〉 for all C ∈ Cψ ; and (ii) |ψ〉
is the unique state with this property up to a global phase.
Crucially, any such state has extent equal to the inverse
of its stabilizer fidelity [25], so ξ(ψ) = F(ψ)−1. When we
already know the value of the extent ξ(ψ), we need only
to evaluate +(ρ) to determine the bounds in Theorem 13
and in Eq. (79). For instance, for the rate of transformation
from any state to a Clifford symmetric state of up to three
qubits, we get R(ρ → ψ) ≤ log+(ρ)

log+(ψ) . Asymptotic distil-
lation rates of the magic states |H 〉 and |F〉 are bounded
by

R(ρ → |H 〉〈H |) ≤ log+(ρ)

log(4 − 2
√

2)
, (80)

R(ρ → |F〉〈F|) ≤ log+(ρ)

log(3 − √
3)

, (81)

where we use the known values of ξ(|H 〉) and ξ(|F〉)
[25,67].
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The above can be compared with the recent bounds
obtained in Ref. [64] for qudit magic state theory, as
our approach similarly yields computable upper bounds
on the rates of distillation, although applicable to the
fundamentally important case of qubit systems.

We can alternatively show these asymptotic results
by using the regularized relative entropy of magic
[35] to bound the achievable rates of transformations
between states using any stabilizer protocol. Specifi-
cally, define r∞(ρ) = limn→∞(1/n)r(ρ⊗n) where r(ρ) =
minσ∈S̄n D(ρ‖σ) black and D(ρ‖σ) = Tr(ρ log ρ)− Tr
(ρ log σ) is the quantum relative entropy. Then the ratio
r∞(ρ)/r∞(σ ) provides a general upper bound on the rate
R(ρ → σ) of the transformation from ρ to σ using sta-
bilizer protocols [35]. This upper bound is achievable
whenever the states can be reversibly interconverted [35]
or when the set of stabilizer protocols is relaxed to the
class of operations that asymptotically preserve the set of
stabilizer states [68]. Using the bounds r(ρ) ≤ log+(ρ)
for arbitrary states [69] and r(ψ) ≥ − log F(ψ) for pure
states [69], we similarly obtain Eq. (79). Notice also that
r(ψ) = log+(ψ) for any Clifford symmetric state, and
r∞(ψ) = log+(ψ) for a Clifford symmetric state of at
most three qubits.

Finally, we remark that the best known magic state
distillation protocols perform many orders of magnitude
worse than our best bounds. It remains a considerable
challenge to close this gap.

VII. CLASSICAL SIMULATION ALGORITHMS

In this section we introduce three simulation techniques,
each associated to one of the magic monotones defined ear-
lier. In Sec. VII A, we generalize quasiprobability-based
methods [15,20,21] for estimating Born-rule probabilities
or expectation values of bounded observables up to addi-
tive error. We use a novel choice of frame consisting
of the set of stabilizer dyads and extend quasiprobabilis-
tic techniques to accommodate this choice. By doing so,
we are able to reduce the sampling overhead compared
to previous qubit quasiprobability simulators [15,21,22],
resulting in a runtime proportional to the dyadic negativity
squared, (ρ)2. In Sec. VII B we describe a simula-
tor, which extends stabilizer-rank methods [24,25], previ-
ously only defined for pure states, to arbitrary mixed-state
inputs. The algorithm simulates the sampling of bit strings
from a quantum circuit (i.e., by measurement of a sub-
set of qubits in the computational basis). We show that
the classical distribution we sample from is δ-close in �1
norm to the quantum distribution, and that under mod-
est assumptions each string is sampled in average time
O[�(ρ)/δ−3], where � is the mixed-state extent. When
an equimagical decomposition is known (recall Definition
3), this becomes the worst-case runtime. This reduces the

runtime by a factor of δ−1 compared to the results of
Ref. [25].

Finally, in Sec. VII C, we introduce the constrained path
simulation technique, which efficiently estimates Pauli
expectation values or Born-rule probabilities up to addi-
tive error on E(ρ) for stabilizer channel E and nonstabilizer
state ρ. The technique approximates the magic state ρ with
the stabilizer part of a feasible solution to the generalized
robustness problem, Eq. (12). Whereas the dyadic frame
simulator outputs estimates to arbitrarily high precision but
with runtime that grows with (ρ), here the estimate is
efficiently computed, but with unavoidable additive error
lower bounded as O[+(ρ)], where + is the generalized
robustness.

A. Dyadic frame simulator

1. Quasiprobability simulators

Before describing our first algorithm, we briefly review
the principles of classical simulation using quasiprobabil-
ities. A very general notion of quasiprobability simulation
was introduced by Pashayan et al. [20]. A specific instance
of this type of simulator is defined by fixing a frame, a
finite set of operators that forms a basis for the space
of Hermitian operators acting on a Hilbert space. This
basis need not be orthonormal and can in general be
over-complete. For concreteness we consider the algorithm
introduced by Howard and Campbell [21], where the frame
is the set of pure stabilizer state projectors. We can define
the n-qubit stabilizer frame as

Gn = {|φ〉〈φ| : |φ〉 ∈ Sn}, (82)

so that the convex hull of Gn is precisely S̄n, the set of
mixed stabilizer states. Indeed, Gn forms an overcomplete
basis for the Hermitian operators on C

2n
. It follows that

any n-qubit density ρ matrix has at least one decomposi-
tion of the form:

ρ =
∑

j

qj |φj 〉〈φj |, |φj 〉〈φj | ∈ Gn,
∑

j

qj = 1, (83)

with qj real. Consider the simulation task of estimating
the Born-rule probability μ = Tr[�E(ρ)], where � is a
stabilizer projector and E is an efficiently simulable chan-
nel, but ρ is a general mixed magic state. Given a known
quasiprobability decomposition as per Eq. (83), we can
rewrite

μ =
∑

j

qj Tr[�E(|φj 〉〈φj |)] =
∑

j

|qj |
‖q‖1

Ej , (84)

where Ej = ‖q‖1sign(qj )Tr[�E(|φj 〉〈φj |)]. Now |qj |/
‖q‖1 are non-negative and sum to unity, so form a proper
probability distribution. The Howard and Campbell [21]
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algorithm goes as follows. First fix a total number of
samples M . Then, perform the below.

1. For each integer k from 1 to M , sample index jk from
the distribution {|qj |/‖q‖1}.

2. Compute each Êk = Ejk .
3. Output μ̂ = (1/M )

∑
k Êk.

It is clear that since Tr[�E(|φj 〉〈φj |)] amounts to eval-
uating a stabilizer circuit, each Êk can be efficiently
computed using the standard Gottesman-Knill tableaux
method [2,3]. Moreover, one can easily check that E(μ̂) =∑

j (|qj |/‖q‖1)Ej = μ, so the algorithm gives an unbiased
estimator for the Born-rule probability. However, due to
the renormalization of the distribution, each estimate Êk
takes a value in the range [−‖q‖1, +‖q‖1], increasing the
variance of the estimator. From Hoeffding’s inequalities
[70], the probability that μ̂ is far from the expected value
μ is bounded as

Pr{|μ̂− μ| ≥ ε} ≤ 2 exp
(

− Mε2

2‖q‖1
2

)
. (85)

It follows that to estimate the value within additive error
at most ε with probability at least 1 − pfail, we must set
the number of samples so that M ≥ 2‖q‖1

2ε−2 log(2p−1
fail).

Recall from Definition 4 that robustness of magic R(ρ) is
defined as the minimal ‖q‖1, so the worst-case runtime for
the Howard and Campbell algorithm scales with (at least)
R(ρ)2.

Whereas in the simulation model described above, the
frame is comprised of stabilizer projectors |φ〉〈φ|, in our
dyadic frame simulator we extend the frame to include
dyads |L〉〈R| where |L〉 and |R〉 may be different stabilizer
states. An operator is now considered free if it is in the con-
vex hull of the dyads eiθ |L〉〈R|. black Importantly, a density
matrix σ can be written in this form if and only if σ ∈ S̄n.
Nonfree density matrices are then expressed as generalized
quasiprobability distributions over the set of n-qubit dyads,
where the “quasiprobabilities” are now complex valued.
As we shall see, the associated dyadic negativity quantifies
the classical simulation overhead for estimating Born-rule
probabilities on a nonfree state. In the next subsection we
illustrate our new algorithm by giving a simplified ver-
sion where the stabilizer circuit elements are restricted
to be probabilistic mixtures of Clifford gates. We subse-
quently generalize the algorithm to cover all completely
stabilizer-preserving circuits with magic state inputs.

2. Dyadic frame simulator

We assume the following restricted simulation set-
ting. The input to the algorithm will consist of (i) a
known dyadic decomposition of a mixed magic state ρ =∑

j αj |Lj 〉〈Rj |; (ii) a circuit description comprised of a
list of T quantum operations {O(1), . . . , O(T)}; and (iii)

a stabilizer projector � representing the outcome of a
Pauli measurement. We stipulate that each O(t) must be
a convex mixture of unitary Clifford channels, O(t) =∑

k p (t)k Uk(·)U†
k , and we assume this decomposition is

known and can be efficiently sampled from. The output
of the algorithm is again an estimate for the Born-rule
probability μ = Tr[�E(ρ)], where E = O(T) ◦ . . . ◦ O(1).
Note that the above restriction on O(T) means that we can
write the whole circuit as an ensemble over unitary Clifford
gates:

E(·) =
∑

�k
p�kU�k(·)U†

�k , (86)

where �k = (k1, k2, . . . , kT) is a vector that represents a Clif-
ford trajectory through the circuit U�k = UkT · · · Uk2Uk1 ,
and p�k is a product distribution and so can be efficiently
sampled from. The algorithm proceeds by sampling ele-
ments from the initial distribution, computing an estimate,
repeating many times, and averaging. The procedure for
generating one sample is as follows.

1. Randomly select index j with probability |αj |/‖α‖1.
2. Randomly select trajectory �k with probability p�k.
3. Compute final dyad:

eiθ ′
j ,�k |L′

j ,�k〉〈R′
j ,�k| = eiθj U�k|Lj 〉〈Rj |U†

�k . (87)

4. Compute sample Ê = ‖α‖1Re{eiθ ′
j ,�k 〈R′

j ,�k|�|L′
j ,�k〉}.

In step 3, eiθ ′
is a final global phase taking into account

the initial phase eiθj = αj /|αj | and the action of the sam-
pled unitary circuit on |Lj 〉 and |Rj 〉, respectively. Whereas
the Howard and Campbell algorithm dealt with projectors
|φ〉〈φ|, so that any global phase on |φ〉 is unimportant,
here |Lj 〉 and |Rj 〉 can represent different stabilizer states
and the combined phase can affect both the magnitude
and sign of the real-valued sample Ê. While the origi-
nal tableaux method used in the Gottesman-Knill theorem
does not track this global phase, subsequent extensions of
the method show that the update can be efficiently com-
puted, including the phase [23–25]. We can also efficiently
compute the complex inner product 〈L|R〉 for any pair of
stabilizer states [23–25]. Thus steps 3 and 4 are efficient.
Note that the two parts of the dyad U�k|Lj 〉 and 〈Rj |U†

�k =
(U�k|Rj 〉)† are updated independently.

The algorithm is completed by repeating steps 1–4 M
times. We can check that the method gives an unbiased
estimator for the target Born-rule probability:

E(Ê) =
∑
j ,�k

|αj |
‖α‖1

p�k
(
‖α‖1Re{eiθ ′

j ,�k 〈R′
j ,�k|�|L′

j ,�k〉}
)

(88)
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= Re

⎧⎨
⎩
∑
j ,�k

eiθj |αj |p�kTr[�U�k|Lj 〉〈Rj |U†
�k]

⎫⎬
⎭ (89)

= Re

⎧⎨
⎩Tr

⎡
⎣�∑

�k
p�kU�k

⎛
⎝∑

j

αj |Lj 〉〈Rj |
⎞
⎠U†

�k

⎤
⎦
⎫⎬
⎭ (90)

= Tr[�E(ρ)]. (91)

We can therefore apply Hoeffding’s inequality in the
same way as for the standard quasiprobability tech-
nique, and using the fact that each Ê is in the range
[−‖α‖1, +‖α‖1], we find that the total number of samples
needed to achieve additive error ε and success probability
1 − ppfail is

M ≥ 2‖α‖1
2ε−2 log(2p−1

fail). (92)

When the decomposition of ρ is optimal with respect
to dyadic negativity as per Definition 5, we have that
‖α‖1 = (ρ). When this holds, the worst-case runtime of
the algorithm will be O[(ρ)2].

This simplified algorithm can be used only in the case
where the stabilizer circuit is a convex mixture of unitary
Clifford operations, so channels are restricted to be unital.
Our main goal, however, is to admit more general stabi-
lizer channels. In particular, extending to adaptive Clifford
circuits with mixed magic state inputs allows for universal
quantum computation [17]. We now sketch how the dyadic
frame simulator can be extended to admit all completely
stabilizer-preserving channels. Full pseudocode and tech-
nical proofs of validity and performance are given in
Appendix C.

The simplicity of the restricted simulator derives from
the fact that unitary operations preserve the norm of the
state vector. This means that when each circuit element O(t)

can be decomposed as a convex mixture of unitary gates,
the probability of choosing a particular trajectory �k through
the circuit depends only on the coefficients p (t)k and is inde-
pendent of initial state. Conversely, Kraus decompositions
of nonunital channels always include nonunitary opera-
tors. When these channels appear in a circuit, transition
probabilities for selecting one of the nonunitary operators
must be computed on the fly as we step through the circuit.
These transition probabilities depend not only on the ini-
tial state, but on the Kraus operators selected in previous
steps, so they cannot be precomputed. Note that in general
a channel may be decomposed as a mixture of NU unitary
and NK nonunitary Kraus operators:

O(·) =
NU∑
k

pkUk(·)U†
k +

NK∑
k′

qk′Kk′(·)K†
k′ . (93)

The probability of picking one of the NU operators Uk can
simply be read off from the coefficients pk. We can infer the

total probability 1 − ∑
k pk that the trajectory chosen will

be from among the NK nonunitary operators, but individ-
ual transition probabilities for each Kk′ must be computed
based on the initial state. In Appendix C we show how
appropriate transition probabilities can be computed effi-
ciently even when the input operator is not a state but a
dyad, provided that we restrict to channel decompositions
where NU, NK ≤ poly(n). We call such a decomposition
simulable. This leads to the following theorem.

Theorem 14. Let ρ = ∑
j αj |Lj 〉〈Rj |, be a known dyadic

decomposition of an initial n-qubit state, where α ∈ C and
the probability distribution {|αj |/‖α‖1} can be efficiently
sampled. Let E = O(T) ◦ . . . ◦ O(1), where each O(t) ∈ On
is a completely stabilizer-preserving channel. Suppose that
every O(t) has a known simulable decomposition. Then,
given a stabilizer projector �, we can estimate the Born-
rule probability μ = Tr(�E[ρ]) within additive error ε,
with success probability at least 1 − pfail and worst-case
runtime

‖α‖2
1

ε2 log(p−1
fail)Tpoly(n). (94)

Furthermore, if the dyadic decomposition of ρ is optimal
then ‖α‖1 can be replaced by (ρ).

By exploiting a dyadic frame, the negativity of the
quasiprobability distribution and algorithm runtime is
greatly reduced compared to previous work [21], with
an improved exponential scaling of the runtime (recall
Theorem 12).

B. The density-operator stabilizer-rank simulator

1. Prior art: the BBCCGH simulator

Here we briefly review a previous stabilizer rank–based
simulation method, which we refer to as BBCCGH in what
follows (after the authors’ initials [25]). BBCCGH simu-
lates sampling length w bit strings �x from measurements
on pure magic states |ψ〉 with runtime linear in pure-
state extent ξ(ψ), and represents the prior state of the art
in stabilizer-rank techniques. In subsequent sections we
improve on this algorithm and generalize to mixed states.
BBCCGH can be decomposed into two main subroutines:
SPARSIFY, which generates a sparse approximation of the
target state, and FASTNORM, which estimates Born-rule
probabilities ‖�|ψ〉‖2 up to multiplicative error. By call-
ing FASTNORM O(w) times, one estimates a chain of
conditional probabilities so as to successively sample the
outcome for each bit of �x in turn. It is crucial that the error
is multiplicative, as this ensures that the output distribu-
tion of the classical algorithm is close in �1 norm to the
quantum distribution P(�x) = |〈�x|ψ〉|2.

In general, stabilizer-rank simulators exploit the fact that
any pure quantum state |ψ〉 can be expressed as a linear
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combination of stabilizer states,

|ψ〉 =
k∑

j =1

cj |φj 〉, (95)

where |φj 〉 are stabilizer states and cj are complex. The
exact stabilizer rank χ(|ψ〉) is the smallest number of
terms k needed for a given state |ψ〉 [23–25]. Compu-
tations can be performed in poly(n, k) time by treating
each stabilizer term in turn (albeit k can grow exponen-
tially with n). In particular Bravyi et al. [25] showed that
FASTNORM can estimate ‖ψ‖2 up to multiplicative error by
repeatedly generating a random number ηA = 2n|〈φA|ψ〉|2,
where |φA〉 is randomly drawn from a subset of stabilizer
states known as equatorial states. Evaluating ηA amounts to
computing k stabilizer inner products (one for each term of
ψ), which can be done efficiently by exploiting a canonical
representation of stabilizer states known as CH form [25].
We summarize this result of Bravyi et al. in the following
theorem.

Theorem 15 ([25]). Given an unnormalized n-qubit vector
|ψ〉 = ∑χ

j =1 cj |φj 〉 with χ stabilizer terms in its decompo-
sition, there exists a classical algorithm FASTNORM that
outputs a random variable η such that

(1 − ε)‖ψ‖2 ≤ η ≤ (1 + ε)‖ψ‖2 (96)

with probability greater than 1 − pfail in worst-case run-
time O[χn3ε−2 log(p−1

fail)].

By applying this algorithm to projected vectors �|ψ〉,
where � is a stabilizer projector, one can estimate Born-
rule probabilities ‖�|ψ〉‖2.

If one was to apply FASTNORM directly to the ideal state
|ψ〉, the runtime would be O[χ(ψ)], where χ is the exact
stabilizer rank. However, computing the exact stabilizer
rank is intractable for many-qubit states. Instead the strat-
egy of BBCCGH is to approximate |ψ〉 with a sparsified
k-term vector |�〉 of smaller stabilizer rank, using the sub-
routine SPARSIFY (Fig. 5). Bravyi et al. [25, Lemma 6]
showed that for any pure state |ψ〉 and any integer k > 0,
one can use SPARSIFY to generate random (unnormalized)
states |�〉 with k stabilizer terms such that

E(‖|ψ〉 − |�〉‖2) ≤ ‖c‖2
1

k
. (97)

In Appendix D we present a simple corollary of Ref. [25,
Lemma 6], which implies that

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ 2
‖c‖1√

k
+ ‖c‖2

1

k
≈ 2

‖c‖1√
k

.

(98)

For any target precision δS > 0, choosing k so that

k ≥ 4‖c‖2
1

δ2
S

, (99)

we get

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ δS + O(δ2
S). (100)

Recall from Sec. II that the minimal value of ‖c‖2
1 is pre-

cisely the pure-state extent. We call Eq. (100) combined
with the lower bound on k in Eq. (99) the BBCCGH
sparsification lemma [25].Thus, with high probability and
subject to some technical caveats discussed in Appendix E,
by combining the two subroutines BBCCGH simulates
sampling from the quantum distribution P(�x) = |〈�x|ψ〉|2
up to an error δS in runtime ‖c‖2

1δ
−4
S poly(n, w). Assum-

ing an optimal decomposition [ξ(ψ) = ‖c‖2
1], the runtime

therefore scales linearly with pure-state extent.
Below we improve on this algorithm in three main

respects: (i) we extend the simulator from pure to mixed
magic state inputs, so that the average-case runtime is pro-
portional to the mixed-state extent � defined in Sec. II;
(ii) we show that important cases admit decompositions
such that � quantifies the worst-case runtime; and (iii) we
derive a new sparsification lemma that improves the run-
time over that implied by Eq. (100) by a factor of 1/δS with
minor caveats. Our new sparsification lemma also avoids
some technical difficulties that arise when applying the

FIG. 5. The SPARSIFY procedure introduced by Bravyi et al.
[25]. The exact state |ψ〉 is approximated by an unnormalized
random vector |�〉 with k stabilizer terms that is, on average,
δ2

S-close in the Euclidean norm, where δS = ‖c‖1
2/k.
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BBCCGH sparsification lemma in a practical algorithm.
The runtime improvements originate from working in the
density-operator picture even when the input magic state is
pure.

We first discuss the proof of our new lemma, before
applying it to classically simulate bit-string sampling.
While our ideas naturally apply to estimating Born prob-
abilities, and can be extended to propagate an initial state
through a noisy stabilizer circuit prior to measurement, we
omit this for brevity.

2. Sparsification lemma

The input to the subroutine SPARSIFY is an integer
k and pure state |ψ〉 with known stabilizer decomposi-
tion, Eq. (95), with coefficient vector c. The output is a
randomly chosen k-term sparsification of |ψ〉,

|�〉 = ‖c‖1

k

k∑
α=1

|ωα〉, (101)

where each |ωα〉 is an independent and identically dis-
tributed (i.i.d.) sampled stabilizer state (cj /|cj |)|φj 〉 for
some j (see Fig. 5), so that we have [25]

E(|ωα〉) = |ψ〉
‖c‖1

⇒ E(|�〉) = |ψ〉. (102)

Since the output |�〉 of SPARSIFY is a random superposi-
tion of nonorthogonal terms, it need not have unit norm. In
Ref. [25], after obtaining a state |�〉 from SPARSIFY, one
estimates its Euclidean norm, and discards the state if its
norm is not close to 1. A state postselected in this way
will be close to the target state with high probability. See
Appendix E for a discussion of why this postselection is
necessary.

Here, we instead consider a sampling strategy that
avoids postselecting |�〉. After SPARSIFY gives a random
|�〉, we renormalize so that it has unit norm. Furthermore,
instead of bounding the error between an individual sample
and the target state |ψ〉, we bound the error between |ψ〉
and the whole ensemble as captured by the density matrix

ρ1 := E

[ |�〉〈�|
〈�|�〉

]
=
∑
�

Pr(�)
|�〉〈�|
〈�|�〉 . (103)

Intuitively, this is advantageous because coherent errors
in each sample smooth out to a less harmful stochas-
tic error. Similarly, randomizing coherent errors improves
error bounds in the setting of circuit compilation [71–74].

Our refinement to the BBCCGH sparsification lemma is
summarized in the following theorem.

Theorem 16. Let ρ1 be the mixed state in Eq. (103). Let
|ψ〉 be an input state with known decomposition |ψ〉 =

∑
j cj |φj 〉, where |φj 〉 are stabilizer states, and let c be the

vector whose elements are the coefficients cj and

Cψ ,c = ‖c‖1

∑
j

|cj ||〈ψ |φj 〉|2. (104)

Then there is a critical precision δc = 8(Cψ ,c − 1)/‖c‖2
1

such that for every target precision δS for which δS ≥ δc,
we can sample pure states from an ensemble ρ1, where
every pure state drawn from ρ1 has stabilizer rank at most
�4‖c‖2

1/δS� and

‖ρ1 − |ψ〉〈ψ |‖1 ≤ δS + O(δ2
S). (105)

When |ψ〉 is a Clifford magic state (recall Sec. VI), the
critical precision becomes δc = 0, and sampled pure states
in ρ1 have stabilizer rank at most �(2 + √

2)‖c‖2
1/δS�.

Notice that the theorem sets a critical precision δc above
which we can achieve the promised 1/δS improvement in
the runtime over BBCCGH [25]. At higher precision, our
runtime has the same leading-order δS scaling as BBC-
CGH but with a much smaller constant prefactor, so still
yields improved performance. Furthermore, for the impor-
tant case of noisy T states, they are Clifford magic states so
the improvement holds across all δ.

The proof of Theorem 16 follows from two lemmata.
Here we sketch the proof strategy, deferring full technical
proofs to Appendices F and G. The first lemma captures
the idea that the ensemble, Eq. (103), can be made close in
the trace norm to the target state |ψ〉〈ψ | by choosing suf-
ficiently large k, up to a term that depends on the variance
of 〈�|�〉. The second lemma then bounds this variance in
terms of Cψ ,c, ‖c‖1, and k.

Lemma 17 (Ensemble sampling lemma). Given a state
|ψ〉 = ∑

j cj |φj 〉 where φj are stabilizer states, we can
sample from an ensemble ρ1 such that every sampled pure
state has stabilizer rank ≤ k and

‖ρ1 − |ψ〉〈ψ |‖1 ≤ 2‖c‖2
1

k
+
√

Var[〈�|�〉], (106)

where |�〉 is the random sparsified vector defined in
Eq. (101).

The first step in proving Lemma 17 is to note that we
can use the triangle inequality to split the problem into two
parts:

‖ρ1 − |ψ〉〈ψ |‖1 ≤ ‖ρ1 − ρ2‖1 + ‖ρ2 − |ψ〉〈ψ |‖1,
(107)

where ρ2 = E(|�〉〈�|)/E(〈�|�〉). The first term is upper
bounded by Var[〈�|�〉]. The second term can then be eval-
uated in terms of |ω〉, and turns out to be upper bounded by
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2‖c‖1
2/k. Full technical details are given in Appendix F. It

remains to bound the variance of 〈�|�〉.

Lemma 18 (Sparsification variance bound). Using the
notation of Lemma 17 the variance of 〈�|�〉 satisfies the
bound

Var[〈�|�〉] ≤ 4(C − 1)
k

+ 2‖c‖4
1

k2 + O
(

C
k3

)
, (108)

where C = Cψ ,c is as given in Eq. (104). When |ψ〉 is a
Clifford magic state as defined in Ref. [25],

Var[〈�|�〉] ≤ 2‖c‖4
1

k2 + O
(

1
k3

)
. (109)

In Appendix G, we prove Lemma 18 by expand-
ing Var[〈�|�〉] as a series of terms of the form
E(〈ωα|ωβ〉〈ωλ|ωμ〉), treating the cases where the indices
α, β, λ, and μ are all distinct (and therefore correspond to
i.i.d. random variables), where α = β, but (α, λ,μ) are all
distinct and so on.

By combining Lemmas 17 and 18 we can now prove
Theorem 16. Substituting k = 4‖c‖2

1/δS and δS ≥ 8(C −
1)/‖c‖2

1 into Eq. (108), we obtain

Var[〈�|�〉] ≤ δ2
S

4

[
1 + O

(
δS

‖c‖1
4

)]
, (110)

and hence, using
√

1 + x ≤ 1 + x for x ≥ 0:

√
Var[〈�|�〉] ≤ δS

2
+ O(δ2

S). (111)

Using Eq. (111) with the expression for k and Lemma 17,
we have

‖ρ1 − |ψ〉〈ψ |‖1 ≤ δS + O(δ2
S). (112)

This proves the main result of Theorem 16. When |ψ〉 is a
Clifford magic state, Eq. (109) combined with Lemma 17
gives

‖ρ1 − |ψ〉〈ψ |‖1 ≤ (2 + √
2)‖c‖1

2

k
+ O

(
1
k2

)
. (113)

This allows us to obtain Eq. (105) by setting k = �(2 +√
2)‖c‖2

1/δS�, completing the proof.
We showed that whenever the constraint on the target

precision δS is greater than a critical precision, one can
sample from an ensemble of sparsified states ρ1 that is δS-
close in the trace norm to 〈ψ |ψ〉, where the number of sta-
bilizer terms is k = 4‖c‖1

2/δS. Compared to the BBCCGH
[25] sparsification lemma where k = 4‖c‖1

2/δ2
S , we see a

factor 1/δS improvement. If the target precision is smaller
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FIG. 6. For the target state |ψ〉 = [cos(θ)|0〉 + sin(θ)|1〉]⊗100

with two choices of θ , we plot the trace norm error δS when
using a sparsification with k terms. Exact bound (EB) refers
to Eq. (106) and is valid for all δS , with the variance exactly
bounded by Eq. (G33). Leading order (LO) refers to our
Theorem 16 expression k = 4‖c‖2

1/δS , and is valid provided
δS ≥ δc with δc highlighted by a vertical line. Note θ = π/8 cor-
responds to the Clifford magic state |H 〉, for which δc = 0. Prior
art (PA) shows the cost of Ref. [25]. The exact stabilizer rank is
χ (see Theorem 2 of Ref. [25]) and this is an upper bound on
PA. When C �= 1 and δS < δc, then EB shows that there is still a
large saving even though LO is not valid in this regime. To better
understand the deviations of EB from LO, we refer the reader to
Appendix G and in particular Fig. 8, and to the discussion at the
end of Sec. VII B.

than the critical precision, one can compute C and obtain a
sharp bound on the trace-norm error by using Lemmas 17
and 18 directly. In this case, the δ−2

S scaling of k is recov-
ered, but with a prefactor often much smaller than in the
original BBCCGH sparsification lemma. This is because
one typically finds that (C − 1)/‖c‖1

2 � 1 for many-qubit
magic states. We illustrate this in Fig. 6, where we compare
the sharpened trace-norm bound of our lemmata with that
of Ref. [25] for states of the form |ψN 〉 = |ψ〉⊗N , where
|ψ〉 are single-qubit magic states, and N = 100. While
δS ≥ 8(C − 1)/‖c‖1

2 we have a quadratic improvement
over Eq. (98), but even in the high-precision regime, we
find a significant reduction in k.

3. Bit-string sampling from mixed magic states

Consider the setting where we have an n-qubit mixed
magic state ρ, and we measure a subset of w qubits in
the computational basis (i.e., we measure Pauli Z for each
qubit), thereby generating a random bit string �x of length
w representing the measurement outcomes. Without loss
of generality we can assume we measure the first w qubits.
Let ��x = |�x〉〈�x| ⊗ 1n−w be the projector representing the
outcome where we obtain bit string �x. Then the probability
of obtaining the string �x is given by the Born rule:

P(�x) = Tr[��xρ]. (114)
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We call P the quantum probability distribution. Here
we deal with the simulation task of classically sampling
from a probability distribution Psim(�x) over w bit strings
�x such that Psim is δ-close in �1 norm to P, with high
probability. Our algorithm is closely related to the sam-
pling algorithm given in Bravyi et al. [25], differing in
two key respects: (i) whereas the Bravyi et al. simulator
is defined only for pure states, our variant admits general
mixed states; and (ii) we take advantage of our improved
sparsification lemma to reduce runtime. We also avoid a
postselection step needed for the Bravyi et al. algorithm
(see Appendix E). Figure 7 gives the key steps for our pro-
cedure for sampling a single bit string. Full pseudocode
is given in Appendix H. The main steps in the algorithm
are (1) the sampling of a random pure state |ψj 〉 from
the ensemble ρ = ∑

j pj |ψj 〉〈ψj |, (2) a call to the subrou-
tine SPARSIFY to generate the k-term approximation |�〉,
and (3) computation of a chain of conditional probabilities
using at most 2w + 1 calls to FASTNORM. In Appendix H
we prove the validity of the algorithm, and give a full anal-
ysis of the runtime. Here we first sketch the proof before
discussing the runtime improvement over Bravyi et al.
[25]. In what follows we assume that δ > δc as defined in
Eq. (16), returning to the case of arbitrary precision at the
end of the section.

We want to show that the classical probability distribu-
tion Psim satisfies

‖Psim − P‖1 ≤ δ + O(δ2), (115)

where P is the quantum distribution. We split the proof into
two parts. First, we consider an idealized algorithm EXACT
where the calls to FASTNORM are replaced by an oracle that
can compute ‖��x|�〉‖ exactly given k-term sparsification
|�〉. Let Pex(�x) be the probability of obtaining the string �x
as the output of EXACT. We first show that Pex is δS-close
to the quantum distribution P in �1 norm, and then show
that Psim is ε-close to Pex. We then split the error budget so
that δ = δS + ε. In Appendix H we show that the optimal
strategy is to set δS = δ/3 and ε = 2δ/3.

Let �xm = (x1, . . . , xm) be the bit string comprised of the
first m bits of �x, and let |�m〉 = ��xm |�〉 be the projection
of the first m qubits of |�〉. By inspection of the last two
steps of Fig. 7, we can multiply the chain of conditional
probabilities and obtain the probability of sampling �x from
EXACT given fixed sparsification |�〉:

Pr(�x|�) = Pr(x1)Pr(x2|�x1) . . . Pr(xw|�xw−1), (116)

= ‖|�1〉‖2

‖|�〉‖2

‖|�2〉‖2

‖|�1〉‖2 . . .
‖��x|�〉‖2

‖|�w−1〉‖2 , (117)

= ‖��x|�〉‖2

‖|�〉‖2 = Tr
[
��x

|�〉〈�|
〈�|�〉

]
. (118)

FIG. 7. Our procedure for classically sampling a single length
w bit string given an n-qubit state with known decomposition
ρ = ∑

j pj |ψj 〉〈ψj |, where each pure state |ψj 〉 in turn has a

known stabilizer decomposition |ψj 〉 = ∑
r c(j )r |φj 〉. We assume

that δ is greater than the critical precision defined in Theorem 16.
The procedure is a variant of that given in Ref. [25] for pure-state
input, making use of two subroutines from that work, SPARSIFY
and FASTNORM, as described above. In the main text we describe
how we improve on the sparsification step, and extend the simu-
lator to admit mixed states as input. The factor of 12 in the initial
step arises from optimization of the error budget between the
sparsification error δS and fast norm estimation error ε; we set
δS = δ/3 and ε = 2δ/3 (see Appendix H).

Thus EXACT simulates sampling from the quantum state
|�〉/‖|�〉‖ exactly; any error arises solely from the sparsi-
fication procedure. Now consider that randomly choosing
a pure state ψj from ρ = ∑

j pj |ψj 〉〈ψj |, generating a
random approximation |�〉 using SPARSIFY and then nor-
malizing is equivalent to sampling a pure state from the
ensemble:

σ =
∑

j

pj

∑
�

Pr(�|ψj )
|�〉〈�|
〈�|�〉 =

∑
j

pj ρ
(j )
1 , (119)
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where Pr(�|ψj ) is the probability of SPARSIFY out-
putting the vector |�〉, and ρ(j )1 is the expected projector
E(|�〉〈�|/〈�|�〉) as defined in Eq. (103), both condi-
tioned on the input to SPARSIFY being |ψj 〉. From our
argument above it follows that Pex(�x) = Tr[��xσ ]. A key
conceptual difference between our method and that of
Bravyi et al. [25] is that while the BBCCGH sparsifica-
tion results are concerned with the fidelity between the
target state |ψ〉 and a single randomly chosen sparsifi-
cation |�〉, here we compare the target state ρ with the
full ensemble over sparsifications σ . From our sparsifica-
tion lemma (Theorem 16), for each pure state |ψj 〉, we
have that ‖ρ(j )1 − |ψj 〉〈ψj |‖1 ≤ δS + O(δ2

S). It follows that
‖σ − ρ‖1 ≤ δS + O(δ2

S), and so

‖Pex − P‖1 ≤ δS + O(δ2
S). (120)

Next we argue that Pex is ε-close to Psim, the distribu-
tion arising from our full classical algorithm. Recall from
Theorem 15 that FASTNORM is able to output estimates for
‖�m‖2 up to some relative error εFN, which we can set arbi-
trarily small (at the cost of increased runtime). One can
show (see Appendix H) that estimating the chain of w con-
ditional probabilities, Eq. (117), using FASTNORM leads
to a total relative error 3wεFN in the distribution sampled
from, i.e.,

(1 − 3wεFN)Pex(�x) ≤ Psim(�x) ≤ (1 + 3wεFN)Pex(�x),
(121)

so to achieve relative error ε we must set εFN = ε/3w.
This governs the runtime of FASTNORM. By combining
this result with Eq. (120) we have

‖Psim − P‖1 ≤ δ + O(δ2). (122)

To analyze the runtime of our simulator, we define

�̃ =
∑

j

pj ‖c(j )‖1
2
, (123)

where c(j ) is the vector of coefficients in the decompo-
sition |ψj 〉 = ∑

r c(j )|φj 〉. Recall from Theorem 15 that
for an n-qubit state vector with k terms, the runtime of
FASTNORM is O(kn3ε−2

FN). From the previous discussion,
if we select the j th pure state in the decomposition of ρ,
we set k ∝ ‖c(j )‖1

2
δ−1 and εFN ∝ δw−1. In a single run of

the full algorithm, FASTNORM is called O(w) times. There-
fore, the runtime to generate a single w-length bit string
is T = O(‖c(j )‖1

2w3n3δ−3) with probability pj . So from
Eq. (123), the average-case runtime is O(�̃w3n3δ−3).
Through �̃, this average-case runtime is sensitive to the
particular decomposition of ρ supplied to the simula-
tor. In the case where the decomposition is optimal with

respect to the mixed-state extent � (Definition 3), we have
�̃ = �(ρ), so that the average-case runtime is linear in
�(ρ). Recall from Sec. III that all single-qubit states admit
an equimagical decomposition (Theorem 3) that naturally
extends to all tensor products of single-qubit states. In that
case ‖c(j )‖1

2 = �(ρ) for all j , so that we can give the
worst-case runtime as O[�(ρ)].

The runtime scaling of O(δ−3) holds provided that the
sparsification error δS is not smaller than the critical thresh-
old δc = 8(C − 1)/‖c‖2

1, where C is defined in Eq. (104).
However, the algorithm is still valid for the case of arbi-
trary precision, δS < δc. In this case we recover the same
leading-order scaling as Bravyi et al., namely O(δ−4) [25],
but typically with a prefactor improved by several orders
of magnitude (see Fig. 6). A detailed technical analysis is
provided in Appendix H, including proof of the following
theorem, which captures the results discussed above.

Theorem 19. Let ρ = ∑
j pj |ψj 〉〈ψj | be an n-qubit

state where every pure state has a known stabi-
lizer decomposition |ψj 〉 = ∑

r c(j )r |φr〉. For every |ψj 〉,
let Cj = ‖c(j )‖1

∑
r |c(j )r ||〈ψ |φr〉|2. Let �̃ = ∑

j pj ‖c(j )‖2
1,

and let D = max{(Cj − 1)/‖c(j )‖2
1}. Then for any pfail > 0,

and δ ≥ 24D there exists a classical algorithm that, with
success probability (1 − pfail), samples a bit string �x of
length w with probability Psim(�x) such that

‖Psim − P‖1 ≤ δ + O(δ2), (124)

where P(�x) = Tr(��xρ), and ��x = |�x〉〈�x| ⊗ 1n−w is a pro-
jector. The algorithm returns �x with random runtime T
where the average runtime is

E(T) = O[w3n3�̃δ−3 log(w/pfail)]. (125)

If the decomposition of ρ is optimal with respect to
Definition 9, then the expected runtime is O[�(ρ)]. More-
over, if the state decomposition is equimagical, then the
right side of Eq. (125) also bounds the worst-case runtime.

If arbitrary precision δ ≤ 24D is required, this can be
achieved at the cost of an increased runtime:

E(T) = O[w3n3�̃(δ−3 + 3Dδ−4) log(w/pfail)]. (126)

C. Constrained path simulator

In a standard quasiprobability simulator, the target state
ρ = ∑

j qj σj is decomposed as an affine combination of
frame elements σj that are in some sense easy to sim-
ulate. We can alternatively combine all the positive and
negative contributions into convex combinations σ+ and
σ−, respectively, so that the decomposition is rewritten:
ρ = λσ+ − (λ− 1)σ−, for some λ = ∑

qj ≥0 qj ≥ 1. The
standard sampling procedure for estimating 〈E〉 for some
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observable E can then be divided into two steps: (i) ran-
domly sample the positive or negative path with proba-
bility λ/‖q‖1 or (λ− 1)/‖q‖1, where ‖q‖1 = 2λ− 1; (ii)
sample an individual frame element from the selected con-
vex combination σ±. As explained in Sec. VII A1, the
number of samples needed to achieve any accuracy ε >
0 is O(‖q‖2

1ε
−2). Viewed in this way, we see that any

increased runtime for simulating magic states arises in step
(i) rather than step (ii). In other words, sampling a frame
element from the convex combination σ± does not incur
additional overhead.

An alternative strategy is to constrain sampling to the
positive path so that step (i) is avoided. This is equiv-
alent to making the approximation ρ ≈ λσ+, and comes
at the cost of an unavoidable systematic error of size
|(λ− 1)Tr[Eσ−]|. However, an advantage to this approach
is that since Tr[Eσ−] is no longer evaluated explicitly, σ−
need not be an efficiently simulable state. Therefore, it is
natural to connect this strategy with primal solutions to the
generalized robustness problem:

ρ = +(ρ)σ − [+(ρ)− 1]ρ−, (127)

where σ is a mixed stabilizer state, but ρ− can be any den-
sity operator. Moreover, since systematic error is unavoid-
able, it is unnecessary to evaluate the first term to high
precision, so the runtime can be reduced. Pseudocode for
our constrained path simulator is given in Algorithm 1. We
then place tight bounds on the systematic error.

Choosing Emax and Emin to be given in steps 3 and 4, we
ensure that for all λ and Eσ ,

|̂E − Tr(EO[ρ])| ≤ � (128)

holds with probability 1 − pfail. The major caveat is that
there are certain regimes (for large λ and small Eσ ) where
the algorithm fails by trivially estimating the true expec-
tation value to be anywhere in the range [−1, 1]. Never-
theless, in some regimes we efficiently obtain a biased but
nontrivial estimate. We first briefly explain steps 3 and 4,
before analysing the error bound and runtime.

Algorithm 1. Constrained path simulator.

When λ and σ are such that ρ ≤ λσ , using Eq. (13),
there is some density matrix ρ− such that ρ can be written
as

ρ = λσ − (λ− 1)ρ−. (129)

Step 2 estimates Eσ such that |Eσ − λTr(EO[σ ])| ≤ ε with
probability 1 − pfail. We use this to bound possible values
of Tr(EO[ρ]):

Tr(EO[ρ]) = λTr(EO[σ ])− (λ− 1)Tr(EO[ρ−]) (130)

≤ Eσ + ε + (λ− 1). (131)

Similarly one obtains Tr(EO[ρ]) ≥ Eσ − ε − (λ− 1).
Trivially we know that |Tr(EO[ρ])| ≤ 1, so in case either
expression exceeds this (for example, if Eσ is close to ±1)
we simply take either Emax = 1 or Emin = −1 as necessary.
We now consider the regimes where the bounds are trivial,
and give the size of the error otherwise.

Case 1 (failure): Trivial bounds are obtained when both
these conditions hold:

Eσ + ε + (λ− 1) ≥ 1, (132)

Eσ − ε − (λ− 1) ≤ −1, (133)

that is, when Eσ satisfies

2 − λ(1 + c) ≤ Eσ ≤ λ(1 + c)− 2. (134)

This holds only if λ ≥ 2/(1 + c) ≈ 2, as otherwise at most
one of the inequalities, Eqs. (132) and (133), can be true.

Case 2 (constant error): When λ < 2/(1 + c) ≈ 2,
there is a range of values of Eσ where inequalities,
Eqs. (132) and (133), are both violated:

λ(1 + c)− 2 ≤ Eσ ≤ 2 − λ(1 + c). (135)

In this case, we have

Ê = Eσ , (136)

� = λ(1 + c)− 1. (137)

Case 3 (error decreases with |Eσ |): The remaining case
occurs when |Eσ | is sufficiently large, so that either Emax =
1 or Emin = −1. This limits the range of possible values of
Tr(EO[ρ]), so that

� = λ(1 + c)− |Eσ |
2

. (138)

This occurs when exactly one of the inequalities,
Eqs. (132) and (133), is satisfied, while the other is vio-
lated. Note that this can happen even when λ � 2, as
it depends on the value of Eσ returned. For example, if
Eσ = ±λ, we obtain Ê = 1 ∓ ε/2 and � = ε/2.
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Estimating λTr(EO[σ ]) using any Clifford simulator
(e.g., the dyadic frame simulator) takes up the most time
in the algorithm, as the other steps are trivial to evalu-
ate. Since σ is a convex combination of stabilizer states,
there is no additional sampling overhead due to negativity.
The prefactor λ increases the variance of the estimator, but
we compensate for this by setting the precision to ε = cλ,
where c is a small constant. The rationale for this is that
the systematic error due to our ignorance of ρ− is unavoid-
able, and this error is of size λ− 1. Therefore, there is a
limit to the precision we can achieve by increasing the run-
time of the sampling step, and we should set the precision
commensurate with the size of λ. Using the standard argu-
ments (see Sec. VII A1), the smallest number of samples T
sufficient to achieve this precision is

T = �2λ2ε−2 log(2p−1
fail)� = �2c−2 log(2p−1

fail)�. (139)

The runtime for our constrained path simulator is therefore
constant with respect to λ [i.e., the generalized robustness
+(ρ) when the decomposition is optimal], depending
only on the parameters c and pfail. In this sense, we achieve
efficient runtime by trading off against precision in the esti-
mate; it is the error� that scales with the magic monotone
rather than the runtime.

Our explicit algorithm for estimating Pauli expectation
values easily adapts to estimate Born-rule probabilities
for stabilizer projectors � by replacing the assumption
|Tr(Eρ)| ≤ 1 for any ρ with 0 ≤ Tr(�ρ) ≤ 1.

VIII. APPLICATIONS TO OTHER RESOURCES

Although we focus on the simulation of quantum cir-
cuits within the stabilizer formalism in Sec. VII, our
methods can be extended beyond magic-state quantum
computation. The crucial idea here is to identify an effi-
ciently simulable quantum subtheory, consisting of a set
of n-qubit pure-state vectors Sn and a set of operators Tn
such that any K ∈ Tn acts on a state |φ〉 ∈ Sn as K |φ〉 ∝
|φ′〉 ∈ Sn, and this update can be efficiently tracked. Any
such subtheory can then be extended to mixed states and to
the dyadic setting, allowing for the adaptation of our clas-
sical simulators. In particular, we can show that—as long
as the subtheory itself satisfies some basic criteria regard-
ing its simulability—we can always efficiently simulate
quantum circuits built from operators in Tn when acting
on states composed of convex mixtures of projectors in Sn.
Just as before, when the algorithms work outside the given
quantum subtheory, they incur an additional resource cost,
which can be measured using our monotones.

This formalism very naturally fits into the framework
of quantum resource theories [50], which study the quan-
tification and manipulation of resources in physically
restricted settings. Here, a set of states and a set of oper-
ations are considered “free,” while states and operations

outside of these sets are costly to use and implement.
The connection we build between classical simulators and
resource theories then connects the quantitative value of
such resources with the performance of the classical sim-
ulators, thus giving an explicit operational meaning to
important resource monotones. Indeed, the monotones R,
, and+ can be defined in general resource theories [55],
but their operational meaning is not always known. For
instance, although the robustness monotones R and +
have found general use in tasks such as channel discrimi-
nation [75,76] and resource conversion [66,77], the dyadic
negativity  has not been shown to have any direct oper-
ational applications in general resource theories, nor has
a connection between monotones such as the generalized
robustness + and classical simulation been established.

In the following, we refer to the pure states Sn as
free. Similarly, we define the set of free operations On
as all quantum channels whose Kraus operators belong
to Tn, and thus cannot generate any resource from a free
state. Analogously, the set of free observables Mn can be
defined to be all observables, which always result in a free
postmeasurement state.

From our discussion of the dyadic frame simulator in
Sec. VII A and Appendix C, the proof clearly requires
only three crucial assumptions about the classical simula-
bility of the underlying subtheory. We formalize them as
follows.

(S1) Only O[poly(n)] bits of information are necessary
to index all n-qubit pure free states in the set Sn.

(S2) Given a free operator K ∈ Tn and any free state
|φ〉 ∈ Sn, we can compute the update K |φ〉 as well as the
norm ‖K |φ〉‖ in O[poly(n)] time.

(S3) Given a free observable � ∈ Mn and any
free states |L〉, |R〉 ∈ Sn, we can compute 〈R|�|L〉 in
O[poly(n)] time.

As before, we are interested in the composition of free
operations O ∈ On, which admit a simulable decompo-
sition, i.e., can be written as O(·) = ∑NK

i=1 Ki · K†
i with

each Ki ∈ Tn and NK ≤ poly(n). With this, our proofs of
Sec. VII A and Appendix C can be immediately applied to
generalize the dyadic frame simulator.

Theorem 14’. Consider a resource theory with free pure
states Sn, free operations On, and free observables Mn
satisfying criteria (S1)–(S3) above.

Let ρ = ∑
j αj |Lj 〉〈Rj |, be a known dyadic decompo-

sition of an initial n-qubit state, where α ∈ C and the
probability distribution {|αj |/‖α‖1} can be efficiently sam-
pled. Let E = O(T) ◦ . . . ◦ O(1), where each O(t) ∈ On. Sup-
pose that every O(t) has a known simulable decomposi-
tion. Then, given � ∈ Mn, we can estimate the Born-
rule probability μ = Tr(�E[ρ]) within additive error ε,
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with success probability at least 1 − pfail and worst-case
runtime

‖α‖2
1

ε2 log(p−1
fail)Tpoly(n). (140)

Furthermore, if the dyadic decomposition of ρ is optimal
then ‖α‖1 can be replaced by (ρ).

Theorem 14’ establishes an efficient simulation algorithm,
which can be employed in any resource theory that sat-
isfies the requirements. The theorem also connects the
monotone  with the sampling overhead of the algorithm,
thus endowing  with an exact operational interpretation
in the context of resource theories beyond magic. The
result of Theorem 14’ additionally allows us to employ
the constrained path simulator of Sec. VII C to define a
related simulation algorithm, which depends on another
monotone—the generalized robustness +. Once again,
the reasoning of Sec. VII C can be applied verbatim under
the assumptions (S1)–(S3).

As an example where the result can be immediately
applied, consider the resource theory of quantum coher-
ence [51,52], where the free states Sn are the vectors of
the computational basis {|i〉}. The free measurements are
in the computational basis, for instance projectors of the
form � = |x〉〈x| ⊗ 1 where x is a fixed bit string, which
can be efficiently computed. The corresponding dyadic
negativity  is then the (elementwise) �1 norm, ‖ρ‖�1 =∑

i,j |〈i|ρ|j 〉|. We remark that ‖ · ‖�1 is trivially a mul-
tiplicative monotone in any dimension. Although ‖ · ‖�1
is one of the most commonly employed measures in the
resource theory of coherence [51,52,78], it has lacked
an explicit operational interpretation thus far. Since the
resource theory of coherence is not known to admit a
unique, physically motivated choice of free operations
[52,79], we briefly discuss the possible choices of On and
their classical simulability. From this, we use Theorem 14’
to give ‖ · ‖�1 an operational interpretation.

The most fundamental class of free operations within the
resource theory of coherence are the incoherent operations
(IOs) [51], defined to be maps that admit a decomposition
into Kraus operators that preserve the set of incoherent
states. Such Kraus operators can be expressed as [80]
K = ∑

x∈S cx|f (x)〉〈x| for some set of bit strings S, coef-
ficients cx, and an arbitrary function f . Given such a K
acting on no more than b qubits, where b is constant, we
can efficiently compute (K ⊗ 1n−b)|i〉. Since any Boolean
f can be implemented by composing a set of universal
classical logic gates (with b = 2) such as AND and XOR,
such gates can generate an IO realizing any Boolean func-
tion. Furthermore, IOs can simulate any quantum channel
with sufficiently many coherent states [51,81].

One family of useful IOs in practice are the strictly inco-
herent operations (SIOs) [80,82], which can be efficiently

implemented by quantum circuits using only incoherent
ancillae [82]. As a subtheory of IO, all the updates are
still efficiently computable. Furthermore, b = 3 suffices to
provide the Toffoli gate, which is universal for classical
reversible logic, and so can generate any Kraus operator
of the required form. The biggest difference between SIOs
and IOs is that, while SIOs are better understood from the
perspective of their practical implementation, they cannot
be promoted to universal quantum operations through the
use of ancillary resource states [81].

We conclude that the resource theory of coherence that
uses either IOs or SIOs as free operations satisfies the con-
ditions of Theorem 14’. Thus, the theorem endows the �1
norm of coherence with an operational interpretation as
the sampling overhead in black the simulation of either of
the classes of operations using the dyadic frame simulator,
and similarly the constrained path simulator gives another
meaning to the robustness of coherence + [83].

Our dyadic frame simulator is especially useful in
resource theories where other simulation algorithms such
as the Howard-Campbell simulator for magic states [21]
cannot be readily adapted. For instance, in the resource
theory of coherence, the free states S̄n form a zero-measure
subset of all states, which means that no resourceful state
ρ can be decomposed as ρ = ∑

j pj |φj 〉〈φj | with |φj 〉 ∈
Sn and so the corresponding robustness quantifier R(ρ)
diverges.

Note, however, that the dyadic frame simulator does not
work for all resource theories. While the dyadic frames
for stabilizer and incoherent operations meet the condi-
tions of Theorem 14, the requirements cannot hold for the
theory of separable states under local operations and classi-
cal communication (LOCC). This is because the free states
consist of an infinite number of inequivalent pure prod-
uct states, which cannot be described using poly(n) bits.
However, one can accurately compute local unitaries act-
ing on product states efficiently. Indeed, our framework
could encompass entanglement and similar theories using
a suitable ε net over the set of separable states, and we
leave the precise statement of the relevant conditions for
future work.

IX. CONCLUSIONS

We introduce three resource monotones into the set-
ting of magic state quantum computation: the dyadic
negativity , the generalized robustness +, and the
mixed-state extent�. The first part of the paper focuses on
resource-theoretic results, including that (i) for pure states,
the monotones all equal the extent monotone ξ ; (ii) for ten-
sor products of single-qubit mixed states, they all coincide;
and (iii) the monotones act multiplicatively on tensor prod-
ucts of single-qubit mixed states. The results significantly
simplify the computation of the monotones for multiple
copies of a single-qubit state, and allow us to completely
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understand the asymptotic behavior of our magic quan-
tifiers, which contrasts with previously used monotones.
Furthermore, our magic monotones often tighten previ-
ously known bounds on distillation rates.

For each monotone, we introduce a related classical sim-
ulation algorithm. Our dyadic negativity simulator has a
runtime proportional to (ρ)2, which is similar to—but
significantly faster than—the Howard-Campbell simulator
with runtime R(ρ)2 where R is the robustness of magic.
Additionally, we show that the dyadic negativity simulator
works for circuits that use completely stabilizer-preserving
operations. This class includes all the conventional stabi-
lizer operations (Clifford unitaries, Pauli projections, etc.)
and we believe it is likely to be strictly larger. If true, the
situation would mirror entanglement theory in the sepa-
ration between LOCC and separable operations [84]. We
find that for tensor products of n single-qubit states, both
 and R scale exponentially with n, but R is exponen-
tially larger than . This establishes our dyadic negativity
simulator as the fastest known quasiprobability simulator
for qubit magic states.

However, not all classical simulation algorithms are
based on quasiprobability distributions, with the stabilizer-
rank methods representing a distinct paradigm. There are
several crucial differences, including that stabilizer-rank
methods enable a stronger notion of classical simulation,
as they allow us to sample outputs of a quantum com-
putation, not just estimate Born-rule probabilities. Prior
work on stabilizer-rank simulations considered only pure
states, but our simulator extends this to mixed states and
demonstrates an expected runtime proportional to �(ρ).
Note the linear dependence on � (largely due to fast
norm estimation [24]), in contrast to the quadratic depen-
dence encountered with quasiprobability simulators. Since
in general [ρ] ≤ �[ρ], it is theoretically possible that
[ρ] � �[ρ] so that [ρ]2 ≤ �[ρ], which would mean a
runtime advantage for the quasiprobability methods. How-
ever, for products of single-qubit states the monontones are
equal, so for such states our resource theory results show
that the advantage clearly falls to the stabilizer-rank sim-
ulators. Furthermore, we improve stabilizer-rank bounds,
with the runtime for sampling Clifford magic states (e.g., T
states) improved to O(1/δ3) from the prior O(1/δ4) bound
where δ is the sampling precision. For other magic states,
the advantage is not as simple to describe using big-O
notation, but Fig. 6 shows it to be considerable in practice.

Finally, by ensuring that our simulation algorithms can
be easily generalized and providing a recipe to adapt the
simulators to resource theories beyond magic states, we
shed light on the simulation of quantum circuits using
very general resources under suitable assumptions. This
not only provides new insight into the practical uses of
resource quantifiers in well-studied theories such as quan-
tum coherence, but also opens an avenue for a further study
of the connections between the theoretical frameworks of

quantum resources and their operational applications in
quantum computation.

A clear direction for further research is to extend our
results to the channel picture, which would enable a more
direct route to simulate circuits with no need to replace
nonfree operations with state injection gadgets. This is
especially important in the context of stabilizer theory for
the simulation of circuits with gates outside the Clifford
hierarchy, as the gadgets then become more complex.
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APPENDIX A: ALTERNATIVE PROOFS FOR
PREVIOUS RESULTS

1. Monotone equivalence proof

Here we prove Lemma 1. Consider an optimal decom-
position for the extent, such that

|
〉 =
∑

i

ci|ψi〉, |ψi〉 ∈ Sn, (A1)

with ξ(
) = ‖c‖2
1. Then

|
〉〈
| =
∑

i,j

cic∗
j |ψi〉〈ψj | (A2)

is a valid decomposition into the dyadic frame leading to

(|
〉〈
|) ≤
∑

i,j

|cicj | (A3)

=
(∑

i

|ci|
)⎛
⎝∑

j

|cj |
⎞
⎠

= ‖c‖2
1 = ξ(
).
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Next, we prove the converse inequality. The dual convex
problem to the minimization of ξ is

ξ(
)= maxω{|〈ω|
〉|2 : such that ∀φ ∈ Sn, |〈ω|φ〉|2 ≤ 1}.
(A4)

Note that the ω need not be properly normalized. Let
us label ω� as a vector achieving this maximum so that
ξ(
) = |〈ω�|
〉|2. We further recall that also has a dual
formulation

(ρ) = max
W

{Tr[Wρ] : such that ∀|φ〉, |ψ〉
∈ Sn, |〈φ|W|ψ〉| ≤ 1}. (A5)

In particular for feasible W we have (ρ) ≥ Tr[Wρ]. We
notice that the extent witness |ω�〉 can be used to build
an operator W = |ω�〉〈ω�| that is a valid witness for .
Therefore,

(|
〉〈
|) ≥ Tr[|ω�〉〈ω�|
〉〈
|]
≥ |〈ω�|
〉|2 = ξ(
). (A6)

Having proved both directions, we conclude an equality.
This proves Lemma 1. Since the witness W is a positive
operator, an identical proof also shows that+(|
〉〈
|) =
ξ(|
〉〈
|). For the � monotone, there is only one
convex decomposition of |
〉〈
|. Hence �(|
〉〈
|) =
ξ(|
〉〈
|).

2. Sandwich theorem

Here we present a proof of Theorem 2. Recall that  is
the result of maximizing over all W witnesses, whereas+
is limited to all W+ witnesses, which immediately leads to
+(ρ) ≤ (ρ). To show (ρ) ≤ �(ρ), one simply takes
the optimal decomposition with respect to �, as follows:

ρ =
∑

j

pj |
j 〉〈
j |,

�[ρ] =
∑

j

pj ξ(
j ).
(A7)

Next, we insert this decomposition into  and use
convexity

[ρ] ≤
∑

j

pj(|
j 〉〈
j |). (A8)

Using Lemma 1 we have

[ρ] ≤
∑

j

pj ξ(
j ) = �[ρ], (A9)

which completes the proof of Theorem 2.

APPENDIX B: GEOMETRY OF �±
ρ

Here we show that the states �±
ρ introduced in Eq. (49)

are contained in the set PY introduced in Definition 7. Note
that Eq. (49) is defined in terms of ρ ∈ PY.

The result �±
ρ ∈ PY is used in the proof of Lemma

7. In that proof, we appeal to geometry presented
in Fig. 3 and here we instead provide an algebraic
argument.

Using the definition of the set PY, to prove that�±
ρ ∈ PY,

it suffices to show that

〈�±
ρ |Y|�±

ρ 〉 ≥ 0,

〈�±
ρ |(X − Y)|�±

ρ 〉 ≥ 0,

〈�±
ρ |(Z − Y)|�±

ρ 〉 ≥ 0.

(B1)

Now note that 〈�±
ρ |Y|�±

ρ 〉 = Tr[Yρ]. Minimizing Tr[Yρ]
over all feasible Bloch vectors (rA, rB, rF) in the decom-
position of ρ given by Eq. (46), we find that Tr[Yρ] ≥ 0,
which proves the first inequality.

Next, we tackle the second inequality (with the third
inequality following in a similar fashion). One computes
that

2〈�±
ρ |(X − Y)|�±

ρ 〉 = 〈�±
ρ |(

√
6σA +

√
2σB)|�±

ρ 〉 (B2)

=
√

6rA ±
√

2
√

1 − r2
A − f 2,

which is positive whenever

√
6rA ≥

√
2(1 − r2

A − f 2) (B3)

or more concisely

rA ≥
√
(1 − f 2)/2. (B4)

For mixtures of 
X
f and 
Z

f , we find this holds with
equality. For mixtures in the convex hull of {
X

f ,
Y
f ,
Z

f }
we find rA ≤

√
(1 − f 2)/2. However, we are currently

considering ρ outside this set, just outside the facet
spanned by 
X

f and 
Z
f . Therefore, Eq. (B4) indeed

holds.

APPENDIX C: DYADIC FRAME SIMULATOR
TECHNICAL DETAILS

Here we prove Theorem 14, which assures the valid-
ity and runtime of our dyadic frame simulator. Recall
that the goal of the dyadic frame simulator is to esti-
mate the Born-rule probability μ = Tr[�E(ρ)], where ρ
is an n-qubit mixed magic state, and E = O(T) ◦ . . . ◦ O(1)

is a sequence of completely stabilizer-preserving channels
O(t) ∈ On. Before proving the theorem, we first restate
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and discuss the restrictions we impose on O(t). Any com-
pletely stabilizer-preserving channel O ∈ On has at least
one Kraus decomposition of the form

O =
NU∑
r

prUr +
NK∑
s

qsKs, (C1)

where all Ur = Ur(·)U†
R are unitary Clifford operations,

and Ks = Ks(·)K†
s correspond to completely stabilizer-

preserving nonunitary Kraus operators [22]. Let PU =∑
r pr be the total weight of the unitary part of the decom-

position. We say that a channel decomposition is sim-
ulable if the number of Kraus operators is bounded as
NU, NK ≤ poly(n). In Theorem 14 we assume that the
channels O(t) provided as input to the algorithm all have
a known simulable decomposition. We use the restriction
on NU for simplicity in the proof, but provided one can
efficiently sample from the distribution {pr/PU} and com-
pute any corresponding Ur, then this restriction can be
removed. Note however that the restriction on NK can-
not be similarly relaxed. For concreteness, we assume
that nonunitary Kraus operators are given as a length
poly(n) list with each entry being a pair. The pair encodes
a stabilizer-preserving Kraus operator and its associated
weight factor. The Clifford part of the decomposition takes
the same format. We use L(t)U and L(t)K to denote the
respective lists for the unitary and nonunitary part of the
decomposition of O(t). Each stabilizer-preserving Kraus
operator K is described by giving an efficient descrip-
tion of the stabilizer state corresponding to the Choi
state �K as

�K = (K ⊗ 1)|�〉〈�|, (C2)

where |�〉 ∝ ∑
j |j 〉|j 〉. Note that since K acts by conju-

gation, �K is a pure stabilizer state, so can be specified by
O(n2) classical bits.

The class of simulable channel decompositions encom-
passes a wide range of practically important stabilizer
operations. First, any convex combination of n-qubit Clif-
ford gates O = ∑

j pj Uj is included, provided {pj } can
be efficiently sampled from. Another subset of simula-
ble channels are those of the form O = O′ ⊗ 1n−b, where
O′ ∈ Ob and b is a small constant. Any O′ ∈ Ob has a 2b-
qubit Choi state �O′ that lies inside the stabilizer polytope
(i.e., it can be written as a convex combination of pure sta-
bilizer states, each corresponding to a Kraus operator) [22].
Although the number of stabilizer states grows superexpo-
nentially with b, the real vector space inhabited by 2b-qubit
density matrices is (4b − 1) dimensional. We can therefore
completely partition the stabilizer polytope into simplices
with 4b vertices, where any mixed stabilizer state inhab-
itsat least one simplex. Hence, by Carathéodory’s theorem,

�O can be written as a convex combination of at most 4b

pure stabilizer states. Thus for families of circuits where
b has a fixed upper bound, NU + NK does not grow with
n. This restriction is not too onerous, since practical quan-
tum algorithms are typically synthesized in terms of one-,
two-, and three-qubit gates, and noise channels are often
assumed to act locally. Moreover, we often already know
the stabilizer decompositions of interesting channels. For
instance, we can express T-gate injection gadgets and the
single-qubit depolarizing channel with only two and four
Kraus operators, respectively.

We now present the algorithm and prove its validity. Our
algorithm has two subroutines: (i) Algorithm 2, which is
an extended Gottesman-Knill-type subroutine that proba-
bilistically updates an input stabilizer dyad given a set of
Kraus operators; and (ii) Algorithm 3, which is an outer
quasiprobability sampling routine that samples an initial
dyad from the initial nonstabilizer state and propagates the
dyad through the circuit, randomly selecting a single Kraus
operator from each decomposition O(t).

Note that in Algorithm 2, we use the trace norm (i.e., the
Schatten 1-norm, ‖A‖1 = Tr[

√
A†A]), rather than the usual

trace (as in the Born rule) to calculate the transition prob-
abilities for propagating with a particular Kraus operator.
While Tr(�ρ) = ‖�ρ�†‖1 for physical states ρ, this does
not hold for general dyads |L〉〈R|. We illustrate that the
Schatten 1-norm is the appropriate choice with a toy exam-
ple. Consider the scenario where the penultimate dyad
is σ (T−1) = |+0〉〈−0|, the final stabilizer channel O(T) is
defined by Kraus operators K1 = 1 ⊗ |0〉〈0| and K2 =
U ⊗ |1〉〈1| for some Clifford U, and the final measure-
ment operator to be evaluated is� = |1〉〈1| ⊗ 1. Now, the
channel O(T) leaves σ (T−1) unchanged, O(T)(|+0〉〈−0|) =
|+0〉〈−0|. It is therefore clear that the correct contribution
to the expectation value estimate (line 15 in Algorithm 3)
should be

μm = ‖α‖1Re{Tr[�σ(T)]}, (C3)

= ‖α‖1Re{Tr[(|1〉〈1| ⊗ 1)|+0〉〈−0|]}, (C4)

= ‖α‖1Re{〈−|1〉〈1|+〉} = −‖α‖1/2, (C5)

where we use cyclicity of the trace, and neglect the phase
eiθr for brevity. We need to ensure that the transition prob-
abilities we compute (in line 4 of Algorithm 2) produce
statistics that converge to this contribution. Suppose we
were to naively use the trace to compute transition prob-
abilities, PTr,j = Tr[Kj σ

(T−1)K†
j ]. Then we would obtain

PTr,1 = Tr[(1 ⊗ |0〉〈0|)|+0〉〈−0|(1 ⊗ |0〉〈0|)], (C6)

= 〈−|+〉 = 0, (C7)
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PTr,2 = Tr[(U ⊗ |1〉〈1|)|+0〉〈−0|(U† ⊗ |1〉〈1|)], (C8)

= 〈−|U†U|+〉|〈1|0〉|2 = 0. (C9)

Here we have a problem, because both paths evaluate to
zero, preventingμm from making any nonzero contribution
to our estimate. By contrast, in our algorithm we use the
Schatten 1 norm to compute transition probabilities:

P1 = ‖(1 ⊗ |0〉〈0|)|+0〉〈−0|(1 ⊗ |0〉〈0|)‖1, (C10)

= ‖|+0〉〈−0|‖1 = 1, (C11)

P2 = ‖(U ⊗ |1〉〈1|)|+0〉〈−0|(U† ⊗ |1〉〈1|)‖1, (C12)

= |〈1|0〉|2‖(U|+〉)|1〉〈1|(〈−|)U†‖1 = 0. (C13)

This method correctly tells us that we should select Kraus
operator K1 with certainty, resulting in the correct contri-
bution μm = −‖α‖1/2.

Below we prove that this strategy leads to an unbiased
estimator for μ, where each individual sample is bounded
as |μm| ≤ ‖α‖1. As per standard quasiprobability simula-
tors (see Sec. VII A1), to estimate an observable within
additive error of ε with success probability psuc ≥ 1 − pfail,
we require at least M samples from our algorithm [20,21],
where

M ≥ 2
‖α‖2

1

ε2 log
(

2
pfail

)
. (C14)

To prove the validity of our algorithm we must (i)
explain how the stabilizer update qrKrσK†

r can be car-
ried out efficiently, (ii) show that the values Pr in steps
2–6 of Algorithm 2 form a proper probability distribution,
and (iii) show that μ̂ returned by Algorithm 3 is an unbi-
ased estimator for Tr[�E(ρ)]. The total runtime given in

Algorithm 2. Stabilizer Kraus update subroutine.

Algorithm 3. Dyadic frame simulator.

Theorem 14 is the product of the number of samples M and
the runtime to compute each sample.

(i) Efficient stabilizer update with Kraus operators.
In Algorithm 2 we must compute the trace norm
‖qrKr|L〉〈R|K†

r ‖1 for all n pairs (qr, Kr) ∈ L, and then
perform the update |L〉〈R| → |L′〉〈R′|. Note that we track
any accumulated phase through the update, but here we
absorb this factor in |L′〉〈R′| for brevity. There are two
cases. Either L is a list of unitary operators, or it is a
list of nonunitary Kraus operators. In the unitary case,
computation of the norm is trivial. Since the initial dyad
σ is normalized with respect to the trace norm, and the
norm is unitarily invariant, we have ‖prUrσU†

r‖1 = pr. By
assumption, pr/

∑
r pr can be efficiently sampled from. In

the nonunitary case, we must compute

‖q′
rKr|L〉〈R|K†

r ‖1 = q′
r‖Kr|L〉‖ · ‖Kr|R〉‖. (C15)

Note that unlike the trace, the trace norm does not depend
on the overlap between Kr|L〉 and Kr|R〉, and their vector
norms are calculated separately. To see how this is done,
we note that a Kraus operator whose Choi state is a nor-
malized pure stabilizer state can always be written in the
form Kr = 2h/2Ur�r, where Ur is a Clifford gate and �r is
a stabilizer projector of rank 2n−h [85], for some h ≤ n.
Since Ur leaves the norm invariant, for the purpose of
computing transition probabilities, only the projector and
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normalization constant matter:

‖q′
rKr|L〉〈R|K†

r ‖1 = q′
r2

h‖�r|L〉‖ · ‖�r|R〉‖. (C16)

The projection of each pure state onto a stabilizer sub-
space can be computed using standard stabilizer simulation
techniques [3,25], in time O(hn2). In the nonunitary case,
we must compute the norm for 2NK projected stabilizer
states, so the total runtime for computing all transition
probabilities for a single step t is O(hNK n2).

Once all N transition probabilities are computed, a sin-
gle Kraus operator Ks ∝ Us�s is randomly selected for the
update, so we must compute |L′〉〈R′| ∝ Us�s|L〉〈R|�sU

†
s .

As discussed in Sec. VII A, it is vital that we track any
acquired phase throughout each update, as this will affect
our final estimate when we average over all M samples
μm. We can do this using the phase-sensitive Clifford sim-
ulator described in Ref. [25]. There it was shown that the
update corresponding to the projection (1 + Q)/2, where
Q is a Pauli operator, can be carried out in O(n2) steps.
A rank 2n−h stabilizer projector can be decomposed as a
product of h Pauli projections, so the projective part of
the update takes time O(hn2). As for the Clifford update,
any n-qubit Clifford operation can be written in canonical
form comprised of O[n2/ log(n)] gates from the stan-
dard gate set {CNOT, H , S} [3]. Bravyi et al. [25] showed
that their phase-sensitive Clifford simulator can perform
CNOT and S updates in time O(n), and H in time O(n2),
so the Clifford update for Ur can be completed in time
O[n4/ log(n)]. Since h ≤ n and for simulable decomposi-
tions NK ≤ poly(n), the time taken is poly(n).

Combining all steps, the total time for a single call to
STABILIZERUPDATE is O[h(NK + 1)n2] + O[n4/ log(n)].
Since h ≤ n and for simulable decompositions NK ≤
poly(n), the call is completed in poly(n) time in the gen-
eral case. We note that in the special case where we restrict
each O(t) to act on at most b qubits, for some fixed b, the
runtime for a single call can be improved considerably. In
that case, NK ≤ 4b (i.e., a constant with respect to n) and
the runtime will be O[b(4b + 1)n2] + O[b2n2/ log(b)].

(ii) Valid probability distribution. From the definition of
P0 in step 6 of Algorithm 2, it is clear that

∑N
r=0 Pr = 1 and

P1, . . . , PN ≥ 0. Hence, to show that {Pr} is a probability
distribution, it suffices to show that P0 ≥ 0. This is trivially
true for the unitary path, as

{
pr/

(∑NU
s=1 ps

)}
is clearly a

properly normalized distribution, with P0 = 0. It remains
to show P0 ≥ 0 for the nonunitary case.

It is given that the channel O(t) is a completely pos-
itive and trace-preserving (CPTP) map. Let OK(·) =∑NK

r=1 qrKr(·)K†
r denote the nonunitary part of the decom-

position, Eq. (C1), and let OU(·) = ∑NU
r=1 prUr(·)U†

r , so
that O(t) = OU + OK . Each Clifford is a unitary operator,
so

∑NU
r=1 prU

†
r Ur = PU1, recalling that PU = ∑NU

r=1 pr and
PK = 1 − PU. Since O(t) is CPTP, its Kraus representation

must be complete:

1 = PU1 +
NK∑
r=1

(
√

qrKr)
†(

√
qrKr). (C17)

It follows that
∑NK

r=1(
√

qrKr)
†(

√
qrKr) = PK1, meaning

that OK is a CPTP map up to normalization by 1/PK . This
normalization is achieved by setting q′

r = qr/PK in step 3.
Then for any pure state |ψ〉, we have

1 ≥ Tr[O(|ψ〉〈ψ |)/PK ] =
NK∑
r=1

Tr[
√

q′
rKr|ψ〉〈ψ |K†

r

√
q′

r],

=
NK∑
r=1

‖√q′
rKr|ψ〉‖2

. (C18)

Let Q(ψ) be the NK -element real vector where the rth entry
is Q(ψ)

r = ‖√q′
rKr|ψ〉‖. From Eq. (C18), we have that

‖Q(ψ)‖ ≤ 1. Then for any normalized dyad |L〉〈R| we can
express the sum of Pr for r ≥ 1 as a dot product between
Q(L) and Q(R):

NK∑
r=1

Pr =
∑
r=1

‖q′
rKr|L〉〈R|K†

r ‖1, (C19)

=
∑
r=1

‖√qrKr|L〉‖ · ‖√qrKr|R〉‖, (C20)

=
∑
r=1

Q(L)
r Q(R)

r , (C21)

= Q(L) · Q(R) ≤ ‖Q(L)‖ · ‖Q(R)‖ ≤ 1, (C22)

where in the last line we use the Cauchy-Schwarz inequal-
ity to show that

∑
r≥1 Pr ≤ 1, as promised. We note that

the strategy of using an “abort” outcome P0 is deployed in
the appendix of Ref. [28] to simulate postselective chan-
nels. In our case the fact that Pr for r ≥ 1 can sum to less
than 1 instead arises from the non-Hermiticity of the initial
dyad σ .

(iii) Unbiased estimator. Finally we show that the
expected value of μ̂ in Algorithm 3 is Tr[�E(ρ)]. First, let
us recombine the unitary and nonunitary part of O(t) into
a single Kraus representation O(t) = ∑NTot

a=1 q(t)r K (t)
r (·)K (t)†

r ,
where NTot = NU + NK , and consider the probability of
sampling the rth pair (qr, Kr) at step t. By inspection of
Algorithms 2 and 3 we see that the probability of taking
the unitary path and then selecting the rth pair from LU is

Pr(“U”, r) = PU × Pr = PU‖p ′
rUrσU†

r‖1 = ‖prUrσU†
r‖1.

(C23)

Similarly the probability of choosing the nonunitary path
followed by the rth element of LK is Pr(“K”, r) = PK Pr =
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‖qrKrσK†
r ‖1. Thus at step t, the probability of sampling

any Kraus operator from the decomposition, whether uni-
tary or nonunitary, is given by Pr(qr, Kr) = ‖qrKrσK†

r ‖1,
and we can drop the distinction between the two.

Now, let the (T + 1)-element vector �r = (r0, r1, . . . , rT)

label a particular trajectory through the circuit, in the fol-
lowing sense. The first entry r0 labels the initial dyad
σ
(0)
�r = |Lr0〉〈Rr0 | sampled in step 3. For t ≥ 1, the entry

rt gives the index of the Kraus operator chosen at the
tth circuit element and we write K(t)

�r (·) = K (t)
rt
(·)K (t)†

rt , and
use q(t)�r to denote the corresponding prefactor. Let σ (t)�r
denote the current dyad updated up to the tth Kraus oper-
ator along the trajectory �r, so that we have the recursive
relation σ (t)�r = q(t)�r K(t)

�r (σ
(t−1)
�r )/P(t)�r , where P(t)�r is the prob-

ability of obtaining the outcome corresponding to the map
K(t)

�r . The probability P�r of choosing the trajectory �r is
given by P�r = ∏T

t=0 P(t)�r , where P(0)�r = |αr0 |/‖α‖1 is the
probability of sampling the initial dyad σ (0)�r . For t ≥ 1,
P(t)�r = ‖q(t)�r K(t)

�r (σ
(t−1)
�r )‖1 is calculated in the tth call to

Algorithm 2. Then the final dyad σ (T)�r that we obtain from
sampling the trajectory �r is

σ
(T)
�r = q�rK�r[σ

(0)
�r ]

P�r/P
(0)
�r

, (C24)

where K�r(·) = K(T)
�r ◦ . . . ◦ K(1)

�r (·) and q�r = ∏T
t=1 q(t)�r .

This dyad is properly normalized according to the trace
norm, but is defined only for those trajectories with
nonzero probabilities P(t)�r > 0 for all t. We write R to
denote the set of all such nonzero probability trajectories.

Now, there are two mutually exclusive possibilities for
a given iteration of Algorithm 3: either we pick rt > 0 at
each circuit element, choose some �r ∈ R, and thus obtain
a normalized dyad σ (T)�r , or at some step we choose rt = 0,
and the iteration terminates with σ (T)�r = 0. Since these are
the only possible outcomes, the total probability of termi-
nating must be Pterm = 1 − ∑

�r∈R P�r. We can now write
down an explicit expression for the expectation value of
the random variable μm in step 15:

〈μm〉 = Pterm · 0 +
∑
�r∈R

P�rRe{‖α‖1eiθr0 Tr[�σ(T)�r ]},

(C25)

=
∑
�r∈R

P(0)�r Re
(
‖α‖1eiθ�r0 Tr{�q�rK�r[σ

(0)
�r ]}

)
, (C26)

where in the second line we cancel the factors P(t)�r for t ≥ 1
with those in the denominator of Eq. (C24). The real vec-
tors �r /∈ R are never chosen when running the algorithm,
since they correspond to paths where P(t)�r = 0 for some
t, and hence K(t)

�r [σ (t−1)
�r ] = 0. Since K�r[σ

(0)
�r ] = 0 for all

�r /∈ R, we can add these zero-probability trajectories to the
summation, Eq. (C26), without affecting the total. Thus

〈μm〉 =
∑

�r
P(0)�r Re

(
‖α‖1eiθr0 Tr{�q�rK�r[σ

(0)
�r ]}

)
, (C27)

=
∑

r0

P(0)�r Re{‖α‖1eiθr0 Tr

× [�
∑

r1,...,rT

q�rK�r(|Lr0〉〈Rr0 |)]},

where in the second line we write P(0)�r outside of the inner
sum since this probability is independent of rt for t ≥ 1.
The inner expression sums over all Kraus trajectories, and
by linearity we have

∑
r1,...,rT

q�rK�r =
∑

rT

q(T)�r K(T)
�r ◦ . . . ◦

∑
r1

q(1)�r K(1)
�r , (C28)

= O(T) ◦ . . . ◦ O(1) = E . (C29)

Hence

〈μm〉 =
∑

r0

P(0)�r Re{‖α‖1eiθr0 Tr[�E(|Lr0〉〈Rr0 |)]} (C30)

= Re

⎧⎨
⎩Tr

⎡
⎣�E

⎛
⎝∑

r0

αr0 |Lr0〉〈Rr0 |
⎞
⎠
⎤
⎦
⎫⎬
⎭ (C31)

= Tr[�E(ρ)], (C32)

where in the second line we use the definition P(0)�r eiθr0 =
αr0/‖α‖1. Hence we prove that 〈μ̂〉 = Tr[�E(ρ)], so μ̂ is
an unbiased estimator, with each individual sample sat-
isfying |μm| ≤ ‖α‖1. We argue above this implies we
need 2‖α‖2

1ε
−2 log(2p−1

fail) samples [Eq. (C14)]. To gen-
erate each sample, we need to make T calls to STABI-
LIZERUPDATE, and we showed in part (i) that each call is
computed in poly(n) time. Therefore, the total runtime is
‖α‖2

1ε
−2 log(p−1

fail)Tpoly(n), as stated in Theorem 14.

APPENDIX D: TRACE-NORM ERROR FOR
BBCCGH SPARSIFICATION

As discussed in Sec. VII B1, the BBCCGH sparsifica-
tion lemma [25, Lemma 6] entails that, given a pure state
with exact stabilizer decomposition |ψ〉 = ∑

j cj |φj 〉, one
can randomly generate a k-term sparsification |�〉, such
that

E(‖|ψ〉 − |�〉‖2) ≤ ‖c‖2
1

k
, (D1)

where ‖·‖ is the standard vector norm. In order to compare
with our new sparsification result, which deals with density
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operators, we need to translate this in terms of the trace
norm. Here we prove the following simple corollary to the
BBCCGH sparsification lemma.

Corollary 1. Given a normalized state |ψ〉 = ∑
j cj |φj 〉,

for any k > 0, one can sample from a distribution of spar-
sified vectors |�〉 = (‖c‖1/k)

∑k
α=1 |ωα〉, where |ωα〉 are

stabilizer states, such that

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ 2
‖c‖1√

k
+ ‖c‖1

2

k
. (D2)

Proof. Let |�〉 = |ψ〉 − |�〉. Then for any particular |�〉
we have

|ψ〉〈ψ | − |�〉〈�| = |ψ〉〈ψ | − (|ψ〉〈ψ | + |�〉〈�|
− |�〉〈ψ | − |ψ〉〈�|), (D3)

= |�〉〈ψ | + |ψ〉〈�| − |�〉〈�|. (D4)

Using the triangle inequality

‖|ψ〉〈ψ | − |�〉〈�|‖1 ≤ 2‖|�〉〈ψ |‖1 + ‖|�〉〈�|‖1, (D5)

= 2‖|�〉‖ · ‖|ψ〉‖ + ‖|�〉‖2, (D6)

= 2‖|�〉‖ + ‖|�〉‖2, (D7)

where the last line follows because |ψ〉 is normalized.
Since the above is true for any |�〉 taken from the distribu-
tion, it follows that

E(‖|ψ〉〈ψ | − |�〉〈�|‖1) ≤ 2E(‖|�〉‖)+ E(‖|�〉‖2).
(D8)

For the second term, the BBCCGH sparsification lemma
[25, Lemma 6] tells us that we have E(‖|�〉‖2) ≤ ‖c‖2

1/k.
This leaves the first term. From Jensen’s inequality, for

any random variable X , we have that E(X ) ≤
√

E(X 2).
So,

E(‖�‖) ≤
√

E(‖�‖2), (D9)

≤ ‖c‖1√
k

, (D10)

where the second line again follows from Ref. [25, Lemma
6]. Substituting into the inequality, Eq. (D8), we obtain the
result. �

APPENDIX E: POSTSELECTION, STABILIZER
FIDELITY, AND THE SPARSIFICATION TAIL

BOUND IN BBCCGH

In this section we discuss technical difficulties that
arise when applying the sparsification results of Bravyi

et al. [25] in the context of the bit-string sampling
algorithm. Recall that the main BBCCGH sparsifica-
tion lemma [25, Lemma 6] only tells us that ran-
domly chosen k-term sparsifications |�〉 will be close to
the target state |ψ〉 = ∑

j cj |φj 〉 on average, specifically
E(‖|ψ〉 − |�〉‖2) ≤ ‖c‖1

2/k. In itself, this does not pre-
clude the possibility of occasionally obtaining |�〉 that
are very poor estimates for |ψ〉. One can check numeri-
cally that this is a rare occurrence, but it is preferable to
put rigorous bounds on the probability of obtaining such
outliers. Bravyi et al. addressed this with the sparsifica-
tion tail bound [25, Lemma 7]. This states that if we set
k ≥ ‖c‖1

2/δ2, the probability of obtaining |�〉 close to |ψ〉
is lower bounded as follows.

Pr
{
‖|ψ〉 − |�〉‖2 ≤ 〈�|�〉 − 1 + δ2

}

≥ 1 − 2 exp
[
− δ2

8F(ψ)

]
, (E1)

where F(ψ) is the stabilizer fidelity, defined F(ψ) =
maxφ |〈φ|ψ〉|2 where φ are stabilizer states. However,
there are two subtleties involved in applying this result in
practice.

First, note that the usefulness of the bound depends on
the norm of |�〉 being close to (or smaller than) 1. But in
general 〈�|�〉 can be larger. In principle, it is possible for
it to be as large ‖c‖1

2, though this is rather unlikely. In
any case, this can be solved by using a postselection step
where we estimate 〈�|�〉 (e.g., using FASTNORM) and then
discard if we find 〈�|�〉 − 1 � δ2. Note that normalizing
|�〉 does not solve this problem, as the BBCCGH sparsifi-
cation results do not tell us about the closeness of |ψ〉 with
|�〉/‖|�〉‖, only the unnormalized vector |�〉.

Assuming we successfully obtain |�〉 with sufficiently
small norm, a second difficulty arises from the right-hand
side of Eq. (E1). The probability of success is larger when
the stabilizer fidelity is small. In Bravyi et al. [25] it is
argued that the failure probability is negligible for cases
of interest where stabilizer fidelity is exponentially small
in the number of qubits n. Let us unpack this argument by
considering a specific case. Assume for the sake of argu-
ment that 〈�|�〉 is very close to 1, so that the expression
in square brackets in Eq. (E1) is ‖|ψ〉 − |�〉‖2 � δ2. Now
suppose we fix target precision δ, and we want to achieve
success probability at least p . By rearranging Eq. (E1)
we see that this is possible only if the stabilizer fidelity
satisfies

F(ψ) ≤ δ2

8 log
(

2
1−p

) . (E2)

To make this concrete, let us use the modest assump-
tions that we want trace-norm error δ no larger than
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10%, and success probability better than 1/2. This can
be achieved only when F(ψ) � 0.0009. Now consider the
case where |ψ〉 = |T〉⊗t, where |T〉 = (|0〉 + eiπ/4|1〉)/√2.
For t-fold tensor products of m-qubit states where m ≤ 3,
stabilizer fidelity is multiplicative [25], so that we have
F(|T〉⊗t) ≈ (0.854)t. It follows that Eq. (E2) is satisfied
for these parameters only when we have at least 45 copies
of |T〉. If we want improved accuracy and success prob-
ability, the minimum value of t needs to satisfy Eq. (E2)
increases. Furthermore, the sparsification tail bound has
the curious property that it seems to suggest worse per-
formance for states containing less magic, as quantified by
the stabilizer fidelity. For example, if instead of the π/8
state |T〉 we consider t-fold tensor products of the π/32
state |π/32〉 = (|0〉 + eiπ/16|1〉)/√2, we must have at least
t ≈ 1200 before Eq. (E1) gives a nontrivial lower bound
on success probability. Therefore, there is a large class of
interesting intermediate-sized quantum circuits for which
the BBCCGH sparsification tail bound cannot be applied.

Our improved sparsification results in Sec. VII B 2
sidestep these difficulties by considering the difference in
the trace norm between |ψ〉〈ψ | and the ensemble ρ1 =∑

� Pr(�) |�〉〈�|
〈�|�〉 from which sparsified vectors are drawn,

rather than fidelity with any particular |�〉. This allows
us to implement classical bit-string sampling with a dis-
tribution δ-close to the quantum distribution, even though
any particular |�〉 may not be a good approximation to
|ψ〉. The key idea is that the measurement statistics on
the ensemble ρ1 mimic those on |ψ〉〈ψ |; the comparison
with any individual |�〉 is unimportant in the context of
bit-string sampling.

APPENDIX F: PROOF OF ENSEMBLE SAMPLING
LEMMA

Here we prove Lemma 17, the first of the two lem-
mata leading to our sparsification result. Given target state
|ψ〉 = ∑

j cj |φj 〉, we need to prove that, for randomly
generated sparse vectors |�〉 = (‖c‖1/k)

∑
α |ωα〉 output

from SPARSIFY (Fig. 5), where |ωα〉 are stabilizer states
randomly drawn from {(cj /|cj |)|φj 〉}, the following holds:

δS = ‖ρ1 − |ψ〉〈ψ |‖1 ≤ 2‖c‖2
1

k
+
√

Var[〈�|�〉]. (F1)

Here k is the number of terms in the sparsified vector |�〉
and ρ1 is the ensemble over all possible normalized |�〉:

ρ1 := E

[ |�〉〈�|
〈�|�〉

]
=
∑
�

Pr(�)
|�〉〈�|
〈�|�〉 . (F2)

First we introduce the operator

ρ2 = 1
μ

E [|�〉〈�|] , (F3)

where μ = E[〈�|�〉]. Then using the triangle inequality,

δS = ‖ρ1 + ρ2 − ρ2 − |ψ〉〈ψ |‖1, (F4)

≤ ‖ρ1 − ρ2‖1 + ‖ρ2 − |ψ〉〈ψ |‖1. (F5)

Now,

‖ρ1 − ρ2‖1 = ‖E

[ |�〉〈�|�
〈�|�〉

]
− E [|�〉〈�|]

μ
‖1, (F6)

= ‖E

[
|�〉〈�|

(
1

〈�|�〉 − 1
μ

)]
‖1. (F7)

Using Jensen’s inequality we can bring the expectation
value outside the norm so that

‖ρ1 − ρ2‖1 ≤ E‖
[
|�〉〈�|

(
1

〈�|�〉 − 1
μ

)]
‖1,

= E

∣∣∣∣〈�|�〉
(

1
〈�|�〉 − 1

μ

)∣∣∣∣ ,

= 1
μ

E|μ− 〈�|�〉|. (F8)

That μ = E[〈�|�〉] = 1 + (‖c‖2
1 − 1)/k comes from

Ref. [25]. Loosening Eq. (F8) with μ−1 ≤ 1 gives

‖ρ1 − ρ2‖1 ≤ E|μ− 〈�|�〉|, (F9)

which is simply the average deviation of 〈�|�〉 from the
mean. Using Jensen’s inequality we get

E|μ− 〈�|�〉| ≤
√

E|μ− 〈�|�〉|2, (F10)

=
√

Var[〈�|�〉],

and so

‖ρ1 − ρ2‖1 ≤
√

Var[〈�|�〉]. (F11)

Next, we consider the term ‖ρ2 − |ψ〉〈ψ |‖1, by first find-
ing an explicit form for ρ2. Observe that

|�〉〈�| = ‖c‖2
1

k2

∑
α,β

|ωα〉〈ωβ |, (F12)

recalling that |ωα〉 = cj |φj 〉/|cj | with probability |cj |/‖c‖1,
so that E(|ωα〉) = |ψ〉/‖c‖1 [25]. Taking the expectation
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value we have

E(|�〉〈�|) = μρ2 = ‖c‖2
1

k2

∑
α,β

E[|ωα〉〈ωβ |]. (F13)

Let σ := E[|ωα〉〈ωα|]. We split Eq. (F13) into two sum-
mations as follows:

μρ2 = ‖c‖2
1

k2

⎡
⎣
⎛
⎝∑
α �=β

E[|ωα〉〈ωβ |]
⎞
⎠+

(∑
α

E[|ωα〉〈ωα|]
)⎤
⎦,

(F14)

= ‖c‖2
1

k2

⎡
⎣
⎛
⎝∑
α �=β

|ψ〉〈ψ |
‖c‖2

1

⎞
⎠ +

(∑
α

σ

)⎤
⎦ , (F15)

= 1
k2

⎛
⎝∑
α �=β

|ψ〉〈ψ |
⎞
⎠ + ‖c‖2

1

k2

∑
α

σ .

In the first contribution, we use the independence of ωα
and ωβ when α �= β and E[|ωα〉] = |ψ〉/‖c‖1. Next, there
are k(k − 1) terms and k terms in the first and second
summations, respectively, so that

μρ2 = (
1 − k−1) |ψ〉〈ψ | + ‖c‖2

1

k
σ . (F16)

Using this form for ρ2, we have that

‖ρ2 − |ψ〉〈ψ |‖1 = μ−1‖μρ2 − μ|ψ〉〈ψ |‖1, (F17)

= μ−1‖(1 − k−1 − μ)|ψ〉〈ψ |

+ ‖c‖2
1

k
σ‖1.

Substituting in the value of μ we find 1 − k−1 − μ =
−‖c‖2

1/k and so

‖ρ2 − |ψ〉〈ψ |‖1 = ‖c‖2
1

kμ
‖σ − |ψ〉〈ψ |‖1 ≤ 2

‖c‖2
1

k
,

(F18)

where we use the triangle inequality, ‖σ‖1 = 1 and
μ−1 ≤ 1. Substituting Eq. (F11) and Eq. (F18) into
Eq. (F5), completes the proof of the lemma.

APPENDIX G: SPARSIFICATION VARIANCE
BOUND

We now prove Lemma 18, the second lemma leading
to Theorem 16. Recall that given a state |ψ〉 = ∑

j cj |φj 〉,

where |φj 〉 are stabilizer states, we can obtain a sparsified
k-term approximation given by

|�〉 = ‖c‖1

k

k∑
α=1

|ωα〉, (G1)

where each |ωα〉 is chosen randomly so that |ωα〉 =
(cj /|cj |)|φj 〉 with probability pj = |cj |/‖c‖1. In general
|�〉 may not be conventionally normalized, but Lemma 18
upper bounds the variance of 〈�|�〉. We now prove
Lemma 18.

Proof of Lemma 18. In Ref. [25] it was shown that

μ = E[〈�|�〉] = ‖c‖2
1

k
+ ‖c‖2

1

k2 E (B) , (G2)

where B = ∑
α

∑
β �=α〈ωα|ωβ〉. Since |ωα〉 and |ωβ〉 are

independently sampled for distinct α and β, we get

E
(〈ωα|ωβ〉) = E(〈ωα|)E(|ωβ〉) = 〈ψ |ψ〉

‖c‖1
2 . (G3)

We use similar proof techniques to bound E[〈�|�〉2], and
in turn bound the variance. We begin with

〈�|�2〉 = ‖c‖4
1

k4

⎛
⎝∑
α,β

〈ωα|ωβ〉
⎞
⎠

2

, (G4)

= ‖c‖4
1

k4

⎡
⎣∑

α

⎛
⎝〈ωα| +

∑
β �=α

〉〈ωα|ωβ〉
⎞
⎠
⎤
⎦

2

, (G5)

= ‖c‖4
1

k4 (k + B)2, (G6)

= ‖c‖4
1

k4 (k2 + 2kB + B2), (G7)

where in the second line we note that there are k terms in
the summation. Whereas from Eq. (G2) we have

E[〈�|�〉]2 = ‖c‖4
1

k4 [k2 + 2kE(B)+ E(B)2]. (G8)

Comparing these expressions, for the variance we obtain

Var[〈�|�〉] = E[〈�|�〉2] − E[〈�|�〉]2, (G9)

= ‖c‖4
1

k4 [E(B2)− E(B)2]. (G10)

By counting terms in the summation B, and using the
relation, Eq. (G3), we find

E(B)2 = k2(k − 1)2

‖c‖4
1

. (G11)
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Expanding B2, we get

B2 =
⎛
⎝∑

α

∑
β �=α

〈ωα|ωβ〉
⎞
⎠
⎛
⎝∑

λ

∑
μ�=λ

〈ωλ|ωμ〉
⎞
⎠ (G12)

=
∑

(α,β,λ,μ)∈A
〈ωα|ωβ〉〈ωλ|ωμ〉 + B′, (G13)

where A denotes the set of all possible combinations
(α,β, λ,μ) where all four indices are distinct, and B′
denotes the remaining terms where at least two of the
indices are the same. Now, if (α,β, λ,μ) are all distinct,
then 〈ωα|ωβ〉 and 〈ωλ|ωμ〉 are independent random vari-
ables, so E(〈ωα|ωβ〉〈ωλ|ωμ〉) = E(〈ωα|ωβ〉)E(〈ωλ|ωμ〉).
This yields

E(B2) = k(k − 1)(k − 2)(k − 3)
‖c‖4

1
+ E(B′). (G14)

Substituting Eqs. (G11) and (G14) back into Eq. (G10), we
obtain

Var[〈�|�〉] = ‖c‖4
1

k4 E(B′)− k(k − 1)(4k − 6)
k4 . (G15)

We now consider terms 〈ωα|ωβ〉〈ωλ|ωμ〉 in the expan-
sion of B2 where (α,β, λ,μ) are not all distinct. We use
the notation Bj =k to indicate the sum of all terms where
indices j and k are equal but all others are distinct, e.g.,
Bλ=α = ∑

α,β,μ〈ωα|ωβ〉〈ωα|ωμ〉, where the summation is
over terms such that α, β, and μ are all distinct, and so on.
There are k(k − 1)(k − 2) terms in each summation of this
type. Similarly for the terms sharing two pairs of indices,
we use the notation Bλ=α;μ=β = ∑

α �=β〈ωα|ωβ〉〈ωα|ωβ〉.
These summations comprise of k(k − 1) terms. From
Eq. (G12), we never have terms where α = β or λ = μ.
We can therefore write

B′ = Bλ=α + Bμ=α + Bλ=β + Bμ=β + Bλ=α;μ=β
+ Bμ=α;λ=β . (G16)

One can check that E[B∗
λ=α] = E[Bμ=β] and E[B∗

μ=α] =
E[Bλ=β]. Therefore,

E[B′] = 2Re{E[Bλ=β] + E[Bμ=β]} + E[Bλ=α;μ=β
+ Bμ=α;λ=β]. (G17)

Next we note that

E[Bλ=β] =
∑
α

∑
β �=α

∑
α �=μ�=β

E[〈ωα|ωβ〉〈ωβ |ωμ〉], (G18)

= k(k − 1)(k − 2)E[〈ωα|]E[|ωβ〉〈ωβ |]E[|ωμ〉],

= k(k − 1)(k − 2)
‖c‖2

1
〈ψ |σ |ψ〉, (G19)

where σ = E[|ωβ〉〈ωβ |] = ∑
j (|cj |/‖c‖1)|φj 〉〈φj |, since

the probability of sampling |ωβ〉〈ωβ | = |φj 〉〈φj | is defined
as pj = |cj |/‖c‖1. Next we consider E[Bμ=β]. Taking the
modulus and using the triangle inequality we obtain

|E[Bμ=β]| ≤
∑
α

∑
β �=α

∑
α �=λ �=β

E[|〈ωα|ωβ〉〈ωλ|ωβ〉|], (G20)

= k(k − 1)(k − 2)E[〈ωα|ωβ〉〈ωβ |ωλ〉], (G21)

= k(k − 1)(k − 2)
‖c‖2

1
〈ψ |σ |ψ〉. (G22)

Similarly, for the last two terms B′′ = Bλ=α;μ=β + Bμ=α;λ=β ,
we obtain

|E[B′′]| ≤
∑
α

∑
β �=α

E[|〈ωα|ωβ〉〈ωα|ωβ〉|], (G23)

+
∑
α

∑
β �=α

E[〈ωα|ωβ〉〈ωβ |ωα〉], (G24)

= 2
∑
α

∑
β �=α

E[〈ωα|ωβ〉〈ωβ |ωα〉]. (G25)

Using cyclicity of the trace get

E[〈ωα|ωβ〉〈ωβ |ωα〉] = E[Tr[〈ωα|ωβ〉〈ωβ |ωα〉]], (G26)

= Tr[E[|ωα〉〈ωα|ωβ〉〈ωβ |]], (G27)

= Tr[E[|ωα〉〈ωα|]E[|ωβ〉〈ωβ |]],
(G28)

= Tr[σ 2], (G29)

so that

|E[B′′]| ≤ 2k(k − 1)Tr[σ 2] ≤ 2k(k − 1). (G30)

Combining the results, Eqs. (G17), (G19), (G22),
and (G30), gives us

E[B′] ≤ 4
k(k − 1)(k − 2)

‖c‖2
1

〈ψ |σ |ψ〉 + 2k(k − 1). (G31)

Writing

C = ‖c‖1
2〈ψ |σ |ψ〉 = ‖c‖1

∑
j

|cj ||〈ψ |φj 〉|2 (G32)

and substituting the expression for E(B′) into Eq. (G15)
we obtain

Var[〈�|�〉] ≤4
k3 − 3k2 + 2k

k4 C + 2
‖c‖1

4

k2

(
1 − 1

k

)

− 4k3 − 10k2 + 6k
k4 , (G33)
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which to leading order in 1/k is

Var[〈�|�〉] ≤ 4(C − 1)
k

+ 2
(‖c‖2

1

k

)2

+ O
(

C
k3

)
,

(G34)

which gives us the general bound appearing in Lemma 18.
Clifford magic states are defined in Ref. [25] as those

pure states |ψ〉 that are stabilized by a group Q of Clifford
unitary operators whose generators take the form UXj U†,
where Xj is the Pauli X operator that acts on the j th qubit.
For such states, there exists [25] an optimal decomposition

|ψ〉 =
∑
q∈Q

cq|φq〉 = 1
|Q|〈ψ |φ0〉

∑
q∈Q

q|φ0〉, (G35)

where |φ0〉 is some stabilizer state that achieves the maxi-
mize possible value for |〈ψ |φ0〉|. If we take this decompo-
sition as the basis for our sparsification, then we have

‖c‖1 = |Q| · (|Q||〈ψ |φ0〉|)−1 = |〈ψ |φ0〉|−1 (G36)

and

σ =
∑
q∈Q

pqq|φ0〉〈φ0|q†, (G37)

where pq = |Q|−1. This yields

〈ψ |σ |ψ〉 =
∑
q∈Q

pq〈ψ |q|φ0〉〈φ0|q†|ψ〉, (G38)

=
∑
q∈Q

pq〈ψ |φ0〉〈φ0|ψ〉, (G39)

= |〈ψ |φ0〉|2 = 1
‖c‖1

2 , (G40)

where in the second line we use the Hermiticity of q and
q|ψ〉 = |ψ〉. This shows that for optimal decompositions
of Clifford magic states, C = 1, and leads to the simplified
bound

Var[〈�|�〉] ≤ 2
(‖c‖1

2

k

)2

+ 2
k3 . (G41)

�
Finally, we comment on the effect of the constant

C when |ψ〉 is not a Clifford magic state. Recall
that C can be written in terms of this expected over-
lap, C = ‖c‖1

2
E
[|〈ψ |ω〉|2], and enters into Theorem

16 via the critical precision δc = 8(C − 1)/‖c‖1
2. Con-

sider |ψ〉 = |ψ ′〉⊗N where |ψ ′〉 are pure states. When
|ψ〉 is a product of N pure states, we can write each

0.1 0.2 0.3 0.4

1.001

1.002

1.003

1.004

1.005

1.006

θ

:= [cos(θ)|0 + sin(θ)|1 ]|θ

C = θ|σθ|θ ||c||21

π

8

1

0.
11

87

FIG. 8. The variable C as introduced in Eq. (G32) as a function
of the angle θ for a class of single-qubit states. This is the C value
for one copy of the state, for n copies we must raise to the nth
power. The prefactor C − 1 appears in Eq. (G33) and is impor-
tant because when C = 1, the variance scales asymptotically as
O(1/k2). We highlight two specific angles θ = {π/8, 0.1187}
that correspond to angles used in Fig. 6. For θ = π/8, we have
C − 1 = 0 and so the O(1/k2) is exact as can be seen in Fig. 6.
For θ = 0.1187, we have the maximal possible value of C and
Fig. 6 shows the maximal deviation from O(1/k2) scaling.

randomly sampled stabilizer state as |ω〉 = ⊗N
α=1|ωα〉,

where |ωα〉 are i.i.d. random vectors. It follows that
E
[|〈ψ |ω〉|2] = (E

[|〈ψ ′|ωα〉|2
]
)N . Since |ωα〉 are always

stabilizer states, when |ψ ′〉 are nonstabilizer states, we
have |〈ψ ′|ωα〉|2 < 1. Therefore, the threshold precision
δc < 8C/‖c‖2

1 = 8(E
[|〈ψ ′|ωα〉|2

]
)N vanishes for large N

when |ψ〉 is a tensor product of N pure states. Moreover,
in Fig. 8 we plot values of C for a class of single-qubit
states, showing that C − 1 is close to zero even when N is
not large.

APPENDIX H: BIT-STRING SAMPLING
SIMULATOR TECHNICAL DETAILS

In this appendix, we give full pseudocode for our bit-
string sampling simulator (Algorithm 4), prove its validity
as a method to classically emulate sampling from the quan-
tum distribution P(�x) = Tr[��xρ], and analyze its runtime.
This constitutes a proof of Theorem 19. As described in the
main text, Algorithm 4 draws bit strings �x from a classical
distribution Psim(�x), using two subroutines from Ref. [25],
SPARSIFY and FASTNORM. As sketched in the main text,
our strategy is to define an idealized algorithm EXACT
where calls to FASTNORM are replaced by an oracle, which
can compute ‖��y |�〉‖ exactly for any unnormalized |�〉
and bit string �y. The algorithm EXACT draws from a dis-
tribution Pex(�x). We first show that Pex is δS-close to the
quantum distribution P. We then argue that the distribu-
tion Psim that Algorithm 4 draws from is ε-close to Pex.
Finally we optimize the choice of δS and ε and analyze the
runtime.
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Algorithm 4. Bit-string sampling for mixed states.

EXACT is identical to our Algorithm 4, except where
our algorithm estimates probabilities ‖��y |�〉‖2 using
FASTNORM, EXACT computes them exactly. Therefore
EXACT first samples a state |ψj 〉 from the ensemble with
probability pj , and chooses a sparsification |�〉 = |�j ,l〉
with probability qj ,l = Pr(�j ,l|ψj ). Given the selected |�〉,
a bit string is sampled by choosing each bit in turn via a
series of conditional probabilities:

Pr(�x|�) = Pr(x1)Pr(x2|�x1) . . . Pr(xw|�xw−1), (H1)

= ‖��x|�〉‖2

‖|�〉‖2 = Tr
[
��x

|�〉〈�|
〈�|�〉

]
. (H2)

Here we use the notation �xm to denote the string comprised
of the first m bits of �x, so that��xm = ⊗m

j =1|xj 〉〈xj | ⊗ 1n−m.
We take �x0 to be the empty string, so that ��x0 = 1. The
probability of choosing y ∈ 0, 1 for the mth bit, given
m − 1 bits already sampled, is computed as

Pr(y|�xm−1) = ‖�(x1,...,xm−1,y)|�〉‖2/‖��xm−1 |�〉‖. (H3)

Thus EXACT outputs bit strings X sampled from a distribu-
tion:

Pex(�x) =
∑

j

∑
l

pj qj ,l
‖��x|�j ,l〉‖2

‖|�j ,l〉‖2 , (H4)

=
∑

j

∑
l

pj qj ,l
Tr[��x|�j ,l〉〈�j ,l|]

〈�j ,l|�j ,l〉 ,

= Tr

⎡
⎣��x

∑
j

pj

∑
l

qj ,l
|�j ,l〉〈�j ,l|
〈�j ,l|�j ,l〉

⎤
⎦ ,

= Tr

⎡
⎣��x

∑
j

pj E

( |�j 〉〈�j |
〈�j |�j 〉

)⎤
⎦ = Tr[��xρ ′],

where ρ ′ = ∑
j pj ρ

(j )
1 , and each ρ(j )1 given by

ρ
(j )
1 :=

∑
�

Pr(�|ψj )
|�〉〈�|
〈�|�〉 . (H5)

In other words ρ(j )1 is the expected sparsification given
target pure state |ψj 〉, as defined in Eq. (103). In
step 2, k is chosen so that by Theorem 16, we
have ‖ρ(j )1 − |ψj 〉〈ψj |‖1 ≤ δS + O(δ2

S), provided δS ≥ δc,
where δc is the critical precision. We return to the δS < δc
case at the end of this appendix. By the triangle inequality
we have

‖ρ ′ − ρ‖1 = ‖
∑

j

pj ρ
(j )
1 −

∑
j

pj |ψj 〉〈ψj |‖
1

, (H6)

≤
∑

j

pj ‖ρ(j )1 − |ψj 〉〈ψj |‖1, (H7)

≤
∑

j

pj [δS + O(δ2
S)] = δS + O(δ2

S). (H8)

Since Pex(�x) = Tr[��xρ ′] and for the quantum distribution
we have P(�x) = Tr[��xρ ′], It follows that ‖Pex − P‖1 ≤
δS + O(δ2

S).
It remains to show that using a sequence of calls to

FASTNORM, Algorithm 4 generates probability distribu-
tions Psim(x) that well approximate Pex(�x), where

Psim(�x) =
∑

j

pj qj ,lQj ,l(�x). (H9)

Here each Qj ,l(�x) is the probability of Algorithm 4 return-
ing �x given the sparsification |�j ,l〉. We now drop the
subscript as we consider a single sparsification |�〉. Recall
that FASTNORM takes as input error parameters pFN and
εFN, and unnormalized vectors ��y |�〉 with known k-term
stabilizer decomposition. Then with probability (1 − pFN)
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it outputs a random variable η that approximates ‖��y |�〉‖2

to within a multiplicative error of εFN:

(1 − εFN)‖��y |�〉‖2 ≤ η ≤ (1 + εFN)‖��y |�〉‖2. (H10)

Algorithm 4 approximates the chain of conditional prob-
abilities H1 by calls to FASTNORM. The probability of
choosing y ∈ {0, 1} for the mth bit of �x, conditioned on the
first m − 1 bits being �xm−1 is therefore bounded as

ε−
‖�(�xm−1,y)|�〉‖2

‖��xm−1 |�〉‖2 ≤ Pr(y|�xm−1) ≤ ε+
‖�(�xm−1,y)|�〉‖2

‖��xm−1 |�〉‖2 ,

with probability (1 − pFN)
2, where

ε± = 1 ± εFN

1 ∓ εFN
. (H11)

So, given a particular sparsification |�〉, the w bit string �x
is sampled from a distribution Q(�x), which satisfies

w∏
m=1

ε−
‖��xm |�〉‖2

‖��xm−1 |�〉‖2 ≤ Q(�x) ≤
w∏

m=1

ε+
‖��xm |�〉‖2

‖��xm−1 |�〉‖2

with probability at least (1 − pFN)
2w. This simplifies to

(1 − εFN)
w‖��x|�〉‖2

(1 + εFN)w‖|�〉‖2 ≤ Q(�x) ≤ (1 + εFN)
w‖��x|�〉‖2

(1 − εFN)w‖|�〉‖2 .

(H12)

One can check that (1 + εFN)
w/(1 − εFN)

w ≤ 1 + 3wεFN,
whenever εFN ≤ 1/5, and the analogous result holds
for the lower bound. Therefore, Qj ,l(�x) approximates
‖��x|�j ,l〉‖2/‖|�j ,l〉‖2 up to multiplicative error 3wεFN.
Comparing Eq. (H4) with Eq. (H9), we therefore obtain

(1 − 3wεFN)Pex(�x) ≤ Psim(�x) ≤ (1 + 3wεFN)Pex(�x).
(H13)

If we want to bound the total multiplicative error due to
the sequence of calls to FASTNORM to ε, then we must set
εFN = ε/(3w). It then follows that

‖Psim − Pex‖1 ≤ ε. (H14)

In the first part of the proof we show that ‖Pex − P‖1 ≤
δS + O(δ2

S) (provided we are above the critical precision
threshold δc). Combined with Eq. (H14), we obtain

‖Psim − P‖1 ≤ ε + δS + O(δ2
S), (H15)

where P(�x) = Tr[��xρ].
Similarly the error bound given above is only obtained

with probability (1 − pFN)
2w ≈ 1 − 2wpFN, so to obtain

the above closeness in �1 norm, with failure probability
at most pfail, we must set pFN = pfail/(2w). If we select
the state |ψj 〉 in step 1, then k ≤ 4‖c(j )‖2

1δ
−1
S + 1. To

return a single bit string �x there are at most 2w calls
to FASTNORM, so the runtime is O(wkn3ε−2

FN log p−1
FN ) =

O[w3n3‖c(j )‖2
1δ

−1
S ε2 log(w/pfail)]. Recall that the statement

of the theorem defined the quantity �̃ = ∑
j pj ‖c(j )‖1

2,
so that the time T to obtain a single bit string is non-
deterministic. The expected (average-case) runtime is
O[w3n3�̃δ−1

S ε2 log(w/pfail)]. If the decomposition is opti-
mal with respect to the monotone �, then we have
�̃ = �(ρ) and the average-case runtime is O[�(ρ)].
For equimagical states, �(ρ) = ξ(ψj ) for all j , and this
expression becomes the worst-case runtime.

We now optimize the choice of δS and ε. Setting the total
error budget δ = δS + ε, by inspecting the runtime we find
that the best constant is obtained by setting δS = δ/3 and
ε = 2δ/3. The constraint δS ≥ 8D therefore becomes δ ≥
24D. Substituting the optimal choice of δS and ε into the
expected runtime, we obtain

E(T) = O[w3n3�̃δ−3 log(w/pfail)]. (H16)

The above holds for the case where the sparsification
error δS is no smaller than a critical value δc = 8(Cj −
1)/‖c(j )‖2

1, where Cj = ‖c(j )‖1
∑

r |cr||〈ψj |φr〉|2 is defined
for the randomly chosen pure state |ψj 〉. Therefore, to
ensure we are above the critical error regime for any
|ψj 〉, we can require that δS ≥ 8D, where D = max{(Cj −
1)/‖c(j )‖1

2}. This entails δ ≥ 24D for the overall preci-
sion.

Now suppose that we want to achieve arbitrary preci-
sion, δ < 24D. In this regime, one can amend the expres-
sion for k in step 2 to achieve any desired precision, at the
cost of slightly poorer scaling in the runtime. We first use
Lemmas 17 and 18 to obtain a sharpened bound on the
sparsification error:

δS ≤ 2
‖c(j )‖1

2

k
+
√

‖c(j )‖2
1

k

√
4D + 2

‖c(j )‖2
1

k
+ O

(
1
k2

)
.

(H17)

When δS � 8D, we can achieve a precision of δS by
choosing

k ≈ 4‖c(j )‖2
1

(
D
δ2

S
+ 1
δS

)
+ O(1). (H18)

Substituting the revised expression for k into the expected
runtime, with δS = δ/3 and ε = 2δ/3, we obtain

E(T) = O[w3n3�̃(δ−3 + 3Dδ−4) log(w/pfail)]. (H19)

Here we recover the same asymptotic δ−3 scaling
as derived from the original BBCCGH sparsification
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lemma [25]. However, the prefactor from this prior work
was two, whereas our prefactor D is typically exponen-
tially small in the number of qubits (see Appendix G).
Therefore, at intermediate precision, the δ−4 term may still
dominate. When the target precision δ is too small, our
bound on the required k exceeds the number of terms in
the exact decomposition of |ψ〉 [i.e., the decomposition
achieving the stabilizer rank χ(ψ)]. In this scenario, using
a sparsified approximation in both our approach and in
Ref. [25] has no benefit, and one should instead use an
exact decomposition without any sparsification.
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