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Moving cavities promise to be a suitable system for relativistic quantum information processing. It has
been shown that an inertial and a uniformly accelerated one-dimensional cavity can become entangled by
letting an atom emit an excitation while it passes through the cavities, but the acceleration degrades the
ability to generate entanglement. We show that in the two-dimensional case the entanglement generated is
affected not only by the cavity’s acceleration but also by its transverse dimension which plays the role of
an effective mass.
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I. INTRODUCTION

Entanglement is a quantum property which has a wide
variety of applications in quantum information tasks such
as teleportation and quantum cryptography. In most canoni-
cal applications, two observers—Alice and Bob—each
hold a subsystem and meet to prepare a bipartite maximally
entangled state. After the state has been prepared, they
separate, taking with them their corresponding entangled
subsystem which can be used to perform information
processing tasks. Such protocols usually assume that
spacetime is flat and that Alice and Bob move with
nonrelativistic speeds. However, to impose more realistic
conditions and gain additional insight into the properties of
quantum correlations, we can analyze what differences
arise when Alice and Rob (the relativistic Bob) move at
relativistic speeds, accelerate, or are in the presence of a
gravitational field.
Early results in the field of relativistic quantum infor-

mation suggested that entanglement of global modes is
degraded from the perspective of observers moving in
uniform acceleration [1,2]. Such states are not useful to
perform quantum information tasks as Alice and Rob must
be able to store information in systems which they can
manipulate. Therefore, they will be required to store
information in spatially localized states. Moving cavities
promise to be good candidates for this since quantum
information can be encoded in cavity field modes which are
localized within the cavities [3]. It was shown that
entanglement can be generated between two cavities,
one inertial and one in uniform acceleration, by letting

an atom interact with the modes of the cavities [4].
However, the result was obtained under the idealized
assumptions of a massless one-dimensional system.
Although useful as a proof of principle, an analysis of
more realistic settings would shed light on the feasibility of
entanglement generation in relativistic scenarios.
In this paper we consider the entanglement generated

between the modes of moving two-dimensional bosonic
cavities. In such a case, the transverse dimension of the
cavity plays the role of an effective mass in the field
equation. This has significant implications as the presence
of mass (or effective mass) has an impact on the entangle-
ment between cavity modes. For example, the degradation
of entanglement between inertial and accelerated field
modes is increased by several orders of magnitude when
the fields are massive [5,6], and the probability of the
excitation of an atom moving through a cavity is lower for
massive fields, which can be used to distinguish between
inertial and noninertial frames [7]. We find that the
entanglement generated by an atom interacting with the
field of an inertial and an accelerated cavity is lower
when the fields are massive, given some fixed cavity size.
Since the transverse dimension contributes to the mass of
the field, we can expect this type of degradation even in
massless bosonic fields when they are considered in more
realistic, two- and three-dimensional cases.
Throughout the paper we assume natural units ℏ ¼ c ¼ 1.

II. PHYSICAL SETUP

We consider a pair of two-dimensional cavities that are in
relative motion. The cavities carry a bosonic field which
vanishes at perfectly reflecting mirrors which constitute the
cavity walls. One of the cavities is uniformly accelerated
in one direction only, which means that its other spatial
dimension will remain inertial and hence unaffected by the
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motion. Following a scheme introduced by Browne and
Plenio [8], an atom is then passed through the two cavities
thereby entangling the cavity field modes.
The stationary cavity can be described by the standard

Minkowski spacetime coordinates xμ ¼ ðt; x; yÞ. We shall
assume that this cavity, as described by an observer located
at the origin of this coordinate system, has boundaries at
x� and y� in the x and y dimensions, respectively. We
denote the length of the cavity walls by Li ¼ xiþ − xi−
where i runs from 1 to 2 and denotes the spatial compo-
nents of the coordinate 3-vector.
Next, we consider a uniformly accelerated cavity moving

in the x direction. The most useful coordinates to describe
this motion are the Rindler coordinates ðη; χ; yÞ defined via

t ¼ χ sinhðηÞ; x ¼ χ coshðηÞ ð1Þ

and the y coordinate is the same as the standardMinkowski y
coordinate. Analogously to the inertial cavity, we define the
accelerating cavity walls by χ� and ~y�. Again, we denote the
proper length of the cavity walls by ~Li ¼ χiþ − χi−. The two
cavity mirrors χ� follow uniformly accelerated trajectories,
and therefore accelerate with proper accelerations of 1=χ�.
We define a to be the proper acceleration at the center of
Rob’s cavity, such that χ� ¼ 1=a� L=2. In our scenario, we
set all cavity lengths to be equal, i.e. Li ¼ ~Li ¼ L. Further,
we choose x� ¼ χ�, y− ¼ −3L=2, yþ ¼ ~y− ¼ −L=2
and ~yþ ¼ þL=2. These coordinates mean that at the instant
t ¼ η ¼ 0, the two cavities are aligned, with their x
coordinates overlapping (see Fig. 1) and their y coordinates
positioned such that the cavities are side by side (Fig. 2). We
will take L to be equal to unity for simplicity.

Finally, we consider the trajectory of the atom. We
choose the atom to be always located at the center of the
inertial cavity in the x dimension, while passing through
y ¼ 0 at t ¼ 0 with constant velocity v in the y dimension.
This can be written in 3-vector notation as xμaðtÞ ¼
ðt; Xa; vtÞ where Xa ¼ ðxþ − x−Þ=2. For the dynamics of
the fields, it will be more useful to parametrize the cavities
and trajectories in terms of the atom’s proper time.
The relation between the proper time, which we denote
as τ, and the coordinate time t is given by t ¼ γτ where
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. The parametrization of the trajectory of the

atom is then xμaðτÞ ¼ ðγτ; Xa; vγτÞ.

III. FIELD DYNAMICS

Having examined the kinematics of the cavities, let us
now describe the quantum fields that are carried by them.
We consider the cavities to each carry a separate field, both
of which vanish at cavity walls obeying Dirichlet boundary
conditions. The fields are initially in the vacuum state
according to the observers comoving with each cavity. The
Bogoliubov transformation of the field between Minkowski
and Rindler reference frames is highly nontrivial [9]. It is
well known that Alice’s cavity, according to Rob, has some
excitations and vice versa. Nonetheless, the initial state of
the two cavities is separable regardless of the coordinates
used to describe it.
The free dynamics of the fields are given by the massive

Klein-Gordon equation, which takes the form

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νϕÞ − κ2ϕ ¼ 0: ð2Þ

Here gμν is the inverse of the spacetime metric, g ¼
detðgμνÞ, and κ is the bare mass of the field. In Alice’s

FIG. 1. Cavity setup in the x dimension. The cavities are
positioned such that the accelerated (red) cavity becomes in-
stantaneously aligned with the inertial (blue) cavity at t ¼ 0. The
dotted line represents the path of the atom, which travels through
the center of the inertial cavity and comes into and out of
alignment with the accelerated cavity at t ¼ ∓T, crossing the
center of the cavity at t ¼ 0. The dashed lines denote Rindler
horizons.

FIG. 2. Cavity setup in the y dimension. We consider the
cavities to be positioned side by side, such that the atom (dotted
line), which is travelling through the inertial (blue) and then the
accelerated (red) cavity at a constant velocity, crosses the center
of the accelerated cavity at t ¼ 0.
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inertial frame the metric is given by gðMÞ
μν ¼ diagð−1; 1; 1Þ

and the massive field equation becomes

−∂ttϕþ ð∂xx þ ∂yyÞϕ − κ2ϕ ¼ 0: ð3Þ

In Alice’s frame the mode inner product is defined as

ðϕ1;ϕ2ÞM ¼ −i
Z
ΣM

dxdyðϕ2∂tϕ̄1 − ϕ̄1∂tϕ2Þ ð4Þ

where ΣM is a hypersurface of constant t. From here, we
follow the usual quantization procedure for fields by
imposing the canonical commutation relation (CCR)

½âmn; â
†
jk� ¼ δmjδnk ð5Þ

where âmn represents the quantum ðm; nÞ-mode operator.
This prescription also comes with the assumption of a state
j0iA for which amnj0iA ¼ 0 for all mode numbers ðm; nÞ.
For this particular choice of metric and coordinates, this
state is called the Minkowski vacuum [10].
Using this quantization method and imposing that the

field is real, we can expand the quantum field in terms of
the classical field mode solutions and the quantum mode
operators as,

ϕ̂Aðt; x; yÞ ¼
X
n;m

NnmunðxÞumðyÞe−iωnmtânm þ H:c: ð6Þ

where

ukðxiÞ ¼ sin

�
kπ
Li

ðxi − xi−Þ
�
;

Nnm ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnmLxLy

p ;

ω2
nm ¼

�
nπ
Lx

�
2

þ
�
mπ

Ly

�
2

þ κ2: ð7Þ

We will therefore represent the quantum field contained
within Alice’s cavity via Eq. (6). Analogously, the field
contained within Rob’s cavity can be quantized. In Rob’s
frame, described by Rindler coordinates, the metric is given
by gðRÞμν ¼ diagð−χ2; 1; 1Þ and so the Klein-Gordon equa-
tion becomes

−∂ηηϕþ ðχ∂χχ∂χ þ χ2∂yyÞϕ − χ2κ2ϕ ¼ 0 ð8Þ

with inner product

ðϕ1;ϕ2ÞR ¼ −i
Z
ΣR

dχdy
1

χ
ðϕ2∂ηϕ̄1 − ϕ̄1∂ηϕ2Þ ð9Þ

and ΣR being a hypersurface of constant η. In this case, we
impose the CCRs,

½b̂mn; b̂
†
jk� ¼ δmjδnk: ð10Þ

As for the Minkowski case, the Rindler coordinates induce
a vacuum state which satisfies the property b̂mnj0i ¼ 0 for
all modes. We can finally write the quantum expansion of
the accelerated cavities field as,

ϕ̂Rðη; χ; yÞ ¼
X
n;m

~Nnm ~unmðχÞ ~umðyÞe−i ~Ωnmηb̂nm þ H:c:

ð11Þ

Note that due to the trivial coordinate transformation in the
y dimension, ~umðyÞ ¼ umðyÞ. The χ spatial function, on the
other hand, is highly nontrivial and obeys the modified
Bessel equation.
The boundary conditions for the accelerated cavity walls

are defined by χ�. This gives the mode solutions in the
accelerated dimension as

~unmðχÞ ¼ ℜ½Ii ~Ωnm
ðκmχ−Þ�Ki ~Ωnm

ðκmχÞ
− Ki ~Ωnm

ðκmχ−Þℜ½Ii ~Ωnm
ðκmχÞ�;

κ2m ¼
�
mπ
~Ly

�
2

þ κ2 ð12Þ

where IαðzÞ and KαðzÞ are the modified Bessel functions of
the first and second kind, respectively. The quantities ~Nnm
and ~Ωnm are functions of the mode numbers ðn;mÞ, the
acceleration of Rob’s cavity and the bare mass of the field.
They are only analytically closed functions for the massless
(1þ 1)-dimensional case of Ref. [4]. We shall evaluate
them numerically for a specified acceleration and bare
mass. Note that we now have a mode-dependent mass term
κm, and hence the field gains an effective mass due to the
presence of the transverse spatial dimension.

IV. ATOM-FIELD INTERACTION

We describe the atom as a two-level system with a
ground state jgi and an excited state jei. The cavity modes
can become entangled by their interaction with the atom,
which passes through the cavities. To achieve this, the atom
is initially prepared in its exited state, and sent through the
cavities with a nonzero probability of emitting an excitation
in either of them. The state of the atom is subsequently
measured. If the atom is found to be in the ground state, an
interaction has occurred; however, it is impossible to
discriminate which cavity field has been excited by the
atom without further measurements. The final state of the
system must therefore be a superposition of both possibil-
ities, resulting in an entangled state of the two cavities [8].
Throughout this article we will describe all interactions in
the interaction picture, which allows us to compute the
dynamics of a state by considering only the interaction
terms of a system Hamiltonian. For a discussion of the
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interaction picture and its details we refer the interested
reader to Refs. [11–13].
We model the atom with the simple case of an Unruh-

DeWitt detector, described by a characteristic frequency Δ
along with raising and lowering operators d̂† and d̂,
respectively. The quantum-mechanical description of the
atom is given by its monopole operator

M̂ðτÞ ¼ d̂†eiΔτ þ d̂e−iΔτ: ð13Þ

The interaction Hamiltonians are given by

ĤI
A=RðτÞ ¼ ϵA=RðτÞM̂ðτÞϕ̂A=RðτÞ ð14Þ

where ϕ̂A and ϕ̂R are field operators given by Eqs. (6)
and (11) which are evaluated along the world line of the
atom with proper time τ. The switching functions ϵA and ϵR
represent the strength of interaction and in general can be
time dependent. We choose them both to be sine functions
of the detector’s proper time of the form

ϵA=RðτÞ ¼ ϵðτÞ ¼ ϵ sin2 ð2πvγτÞ; ð15Þ

which spread the interaction smoothly over the whole
interaction interval and vanish at the cavity boundaries,
representing the atom going out of alignment with the
cavities.
The evolution of the entire system can be written as

jψi ¼ URUAjψð0Þi where jψð0Þi is the initial state of the
system, and UA and UR are the unitary operators that
evolve Alice and Rob’s subsystems. This corresponds to
the state first evolving under the interaction of Alice’s
Hamiltonian, followed by Rob’s. Assuming that the
cavities are initially in the vacuum state and the atom is
excited, i.e. jψð0Þi ¼ j0iAj0iRjei, the evolution of the state
to first order in perturbation theory becomes

jψi ¼
�
id − i

Z
dτðHI

AðτÞ þHI
RðτÞÞ

�
j0iAj0iRjei ð16Þ

where the integration is over the interaction time of the
atom and the cavities and id represents the identity operator.
The kinematic setup of the cavities gives the interaction
time interval for Alice’s and Rob’s cavities as τ ∈
½−3T;−T� and τ ∈ ½−T; T�, respectively, where we can
now write T ¼ 1=2vγ.
In our scheme we will be interested in events where the

atom has been detected in the ground state after passing
through the cavities. Denoting the post-selected state of the
system as jϕi, we can write it as

jϕi ¼ −i
Z

dτhgjd̂e−iΔτjeiMðτÞϵðτÞ½ϕ̂AðτÞ

þ ϕ̂RðτÞ�j0iAj0iR: ð17Þ

We observe the only nonzero contributions to this state
come from the d̂â† and d̂b̂† terms of the Hamiltonians (14).
Expanding the post-selected state as a superposition over
single-particle states, we obtain

jϕi ¼
X
n;m

½FA
nmâ

†
nm þ FR

nmb̂
†
nm�j0iAj0iR ð18Þ

with

FA
nm ¼ − i sinðnπ=2Þ

Z
−T

−3T
dτΛðτÞeþiωnmγτ;

FR
nm ¼ − i

Z
T

−T
dτΛðτÞ ~unmðχðτÞÞeþi ~ΩnmarctanhðaγτÞ ð19Þ

where χðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=a2 − γ2τ2

p
, T ¼ 1=2vγ and we have

denoted

ΛðτÞ ¼ ϵðτÞ sin ðmπðvγτ − 1=2ÞÞe−iΔτ: ð20Þ

It should be noted that for a given atom velocity v, the
proper acceleration at the center of Rob’s cavity has a
maximum value. Since the term under the square root in
χðτÞ has to be positive, we can write a ≤ ðγjτjÞ−1 for all
τ ∈ ½−T; T�. As this inequality has to be true for all allowed
τ, we can establish an upper bound on the cavity’s
acceleration by maximizing jτj. Substituting jτjmax ¼ T ¼
ð2vγÞ−1 into the previous inequality gives us an upper
bound on acceleration as a ≤ 2v. Physically, this means
the walls of Rob’s cavity cannot crash into the atom.
The maximum acceleration at the center of Rob’s cavity is
therefore a ¼ 2 in the limit v → 1, noting that in this limit
one side of Rob’s cavity approaches the Rindler horizon
and therefore its proper acceleration diverges.

V. ENTANGLEMENT CALCULATION

Let us determine the degree of entanglement shared by the
cavities after the atom has passed through the cavities. The
state of the cavities is pure, since we only take into account
the post-selected events when the atom is found in the
ground state after the interaction, and therefore we can use
the von Neumann entropy as a valid measure of nonlocal
correlations. We first find the reduced density matrix ρ̂R ¼
trAðjϕihϕjÞ of Robs’s cavity. Since Ah0jâ†nmj0iA ¼
Ah0jânmj0iA ¼ 0 and Ah0jânmâ†ijj0iA ¼ δniδmj, we have

ρ̂R ¼
X
n;m

jFA
nmj2j0iRh0j þ

X
nmij

FR
nmF̄R

ijb̂
†
nmj0iRh0jb̂ij: ð21Þ

We find numerically that there always exists a point where
successive terms stop contributing nontrivially to the sum.
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We can therefore truncate the matrix involved in the
expression, and instead consider a finite-dimensional matrix.
We arrange the mode integrals into a vector as

~F ¼ ðFR
11;…; FR

1N;…; FR
N1;…; FR

NNÞ: ð22Þ

From this vector we can construct a matrix representation of
Rob’s state in the basis fb̂†nmj0iRg as ρR ≔ ðPn;mjFA

nmj2Þ ⊕
ð~F ⊗ ~F†Þ. Our newly constructed matrix then takes the
form

ρR ¼

0
BBBBBB@

P
n;m

jFA
nmj2 0 � � � 0

0 jFR
11j2 � � � FR

11F̄
R
NN

..

. ..
. . .

. ..
.

0 FR
NNF̄

R
11 � � � jFR

NN j2

1
CCCCCCA

ð23Þ

for a numerically established truncation point N. Here we
have defined the first element of the matrix to be the
coefficient of j0iRh0j. After the renormalization ρ̂R →
ρ̂R=trðρ̂RÞ where trðρ̂RÞ ¼

P
n;m½jFA

nmj2 þ jFR
nmj2�, the state

can be used to evaluate the von Neumann entropy
SðρÞ ¼ −trðρ log ρÞ. One then finds the eigenvalues of the
truncated matrix and computes the entropy via SðρRÞ ¼
−
P

kλk logðλkÞ where λk are the eigenvalues of ρR. We find
the entanglement generated between the cavities decreases
monotonically as a function of the proper acceleration at the
center of Rob’s cavity. One can see in Fig. 3 that the effect of
acceleration is much smaller when compared with the effect
due to mass. As previously mentioned, the kinematic setup
of the cavities dictates the maximum acceleration of Rob’s
cavity. To access higher accelerations, and hence generate

smaller amounts of entanglement, the velocity of the two-
level system must be increased.
Additionally, we find that the entanglement degradation

oscillates as a function of the bare mass of Rob’s field. To
understand the oscillations in the plot, we can consider the
case of zero acceleration, i.e. a ¼ 0. The integrals FR

nm can
then be explicitly calculated. The resulting expression takes
the form

FR
nm ¼ fnmðκÞð1 − ð−1ÞneignmðκÞÞ ð24Þ

where

gnmðκÞ ¼
1

v

�
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2n2 þ π2m2 þ κ2

p �
ð25Þ

and fnmðκÞ is a polynomial in κ of order Oðκ−6Þ. There are
points of constructive resonance where 1−ð−1ÞneignmðκÞ¼2,
and it is these resonances that contribute to the local
maxima observed in the entanglement between the cavities.
Physically, this corresponds to a resonance between the
internal energy gap of the detector and the energy of the
quanta contained within Rob’s cavity.
The results show that the introduction of field mass

degrades our ability to entangle the two cavities. However,
the entanglement degradation can be in principle
avoided by adjusting the physical characteristics of
the cavities [4].

VI. CONCLUSIONS

We have examined the entanglement generated between
the modes of two cavities in relative motion when interacting
with a two-level system. We showed that the physical setup
is robust against the effects of acceleration, which could be
exploited to generate entangled states between an inertial and
an accelerated cavity for use in quantum information
protocols. Moreover, we found that the mass of the field
contained within the accelerated cavity reduces our ability to
generate entangled states, introducing a damped undulatory
degradation. The extra spatial dimensions contribute to the
mass of the field and, therefore, we can expect the
degradation effect to occur in experimental implementations
that use massless bosonic fields. In the case of optomechan-
ical experiments, the current maximum acceleration achiev-
able is of the order 20g [14]. Assuming this maximum
acceleration is obtained at the χ− boundary, we find that the
acceleration at the center of Rob’s cavity is (with full units
restored) a ¼ 20g=ð1þ 10gL=c2Þ ≈ 20g for any realistic
choice of L. In our analysis we assumed dimensionless
acceleration was up to order unity and hence the physical
acceleration is of the order c2 ≫ 20g. Therefore, for opto-
mechanical settings, the detrimental effects of acceleration
will be minimal and the most significant degradation will
occur due to mass (bare, effective or both).

FIG. 3. Entanglement generated between the two cavities as a
function of acceleration at the center of Rob’s cavity, a, and the
bare mass of his field κ. Here we set all cavity lengths to unity,
Δ ¼

ffiffiffiffiffiffiffi
2π2

p
and v ¼ 1=2.
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Another possible use of our analysis could be in the
ability to distinguish between inertial and accelerated
observers. Given that extra spatial dimensions act as an
effective mass for the bosonic field, one could distinguish
inertial frames from noninertial frames following the
setting of Dragan et al. [7].
Future directions of work could be to extend the model

of scalar fields to Dirac fields and to use the detectors
themselves for entanglement extraction.
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