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We investigate the distribution of bipartite and multipartite entanglement in multiqubit states. In
particular, we define a set of monogamy inequalities sharpening the conventional Coffman-Kundu-
Wootters constraints, and we provide analytical proofs of their validity for relevant classes of states. We
present extensive numerical evidence validating the conjectured strong monogamy inequalities for arbitrary
pure states of four qubits.

DOI: 10.1103/PhysRevLett.113.110501 PACS numbers: 03.67.Mn, 03.65.Ud

Introduction.—Entanglement is one of the most funda-
mental and intriguing features of quantum mechanics. It
plays a crucial role for applications in quantum information
and communication, and in a variety of areas ranging from
quantum field theory to condensed matter, statistical
physics, thermodynamics, and biology [1–3]. Despite its
central importance, however, the physical understanding
and mathematical description of its essential characteristics
remain highly nontrivial tasks, particularly when many-
particle systems are analyzed.
One of the key properties distinguishing entanglement

from classical correlations is its monogamy: entanglement
cannot be freely shared among multiple parties [4].
Monogamy is a consequence of the no-cloning theorem
[5–7], and is obeyed by several types of nonclassical
correlations, including Bell nonlocality [8], Einstein-
Podolsky-Rosen steering [9], and contextuality [10], albeit
not discord-type correlations [11].
In 2000 Coffman, Kundu, and Wootters (CKW) formal-

ized the monogamy of entanglement for a three-qubit
system in the form of a quantitative constraint, known as
“monogamy inequality” [12]. Given an arbitrary pure state
jψi ∈ H ¼ ðC2Þ⊗3 of three qubits q1, q2, and q3, the CKW
inequality with respect to the choice of q1 as a focus can be
written as

τð1Þq1jðq2q3ÞðjψiÞ ≥ τð2Þq1jq2ðjψiÞ þ τð2Þq1jq3ðjψiÞ: ð1Þ

Here τð2Þqijqj denotes the bipartite entanglement in the reduced

state of the pair of qubits qi and qj, quantified by a
computable entanglement monotone known as two-tangle,

or simply tangle [12–14]. The term τð1Þq1jðq2q3Þ denotes the

one-tangle, a measure of entanglement between q1 and
the rest of the system, given by the linear entropy of the
marginal state of qubit q1:

τð1Þq1jðq2q3ÞðjψiÞ ¼ 4 det ρ1; ð2Þ

where ρ1 ¼ Trq2q3ðjψihψ jÞ is the density matrix of qubit q1
and TrXðρÞ indicates the partial trace of ρ over subsystem X.
The meaning of Eq. (1) is clear: the entanglement

between q1 and the two other qubits taken as a group
cannot be less than the sum of the individual entanglements
between q1 and each of the two remaining qubits. Similar
inequalities can be written by selecting q2 or q3 as focus
qubits. Remarkably, the difference between the left- and
right-hand side of Eq. (1) can be interpreted as a quantifier
of the entanglement genuinely shared among the three
qubits. Precisely, one can define the residual three-qubit
tangle—or, in short, three-tangle—of jψi as

τð3Þq1jq2jq3ðjψiÞ ≔ τð1Þq1jðq2q3ÞðjψiÞ − τð2Þq1jq2ðjψiÞ − τð2Þq1jq3ðjψiÞ:
ð3Þ

Interestingly, this quantity does not depend on the focus qubit
(e.g., q1) that we privilege in the decomposition. Namely,

τð3Þq1jq2jq3ðjψiÞ ¼ τð1Þq2jðq3q1ÞðjψiÞ − τð2Þq2jq3ðjψiÞ − τð2Þq2jq1ðjψiÞ ¼
τð1Þq3jðq1q2ÞðjψiÞ − τð2Þq3jq1ðjψiÞ − τð2Þq3jq2ðjψiÞ as well [12]. The

three-tangle is a full-fledged measure of the genuine tripartite
entanglement of any three-qubit pure state jψi [1,15].
A generalization of the CKW inequality (1) to n-qubit

systems was only proven by Osborne and Verstraete [16]
several years after the original conjecture [12]. Denoting
now by jψi a general pure state of n qubits, the following
holds [16]:

τð1Þq1jðq2���qnÞðjψiÞ ≥ τð2Þq1jq2ðjψiÞ þ τð2Þq1jq3ðjψiÞ
þ � � � þ τð2Þq1jqnðjψiÞ: ð4Þ

This means that the entanglement between q1 and the rest
is not less than the sum of the individual pairwise
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entanglements involving q1 and each of the other n − 1
qubits qj (j ¼ 2;…; n). However, for n > 3, the difference
between the left- and right-hand side in Eq. (4) just gives a
rough indicator of all the leftover entanglement not distrib-
uted in pairwise form. Attempts to construct generalized
monogamy inequalities in n-qubit systems have been
considered [3,17–19], but these have not led to clear recipes
to isolate the genuine n-partite entanglement, nor have they
resulted in a general sharpening of Eq. (4) for arbitrary states.
In this Letter we propose and investigate a set of sharper

monogamy constraints. We raise the intuitive hypothesis

that the residual in Eq. (4) is amenable to a further
decomposition into individual m-partite contributions
which involve m ¼ 3; 4;…; n − 1 qubits, in all possible
combinations encompassing the focus qubit q1.
Heuristically, one can expect that all of these multipartite
contributions are independent, overall adding up to the
global bipartite entanglement between q1 and the rest of the
system. This leads us to postulate a hierarchy of strong
monogamy (SM) inequalities limiting the distribution of
bipartite and multipartite entanglement in n-qubit systems,
which take in general the following form:

τð1Þq1jðq2���qnÞðjψiÞ ≥
Xn−1
m¼2

X
~jm

½τðmÞ
q1jqjm

1
j���jqjm

m−1

ðjψiÞ�μm

≡Xn
j¼2

τð2Þq1jqjðjψiÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

2 -partite

þ
Xn
k>j¼2

½τð3Þq1jqjjqkðjψiÞ�μ3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3- partite

þ � � � þ
Xn
l¼2

½τðn−1Þq1jq2j���jql−1jqlþ1j���jqnðjψiÞ�μn−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn−1Þ- partite

; ð5Þ

where we have employed a short-hand notation, introduc-
ing the index vector ~jm ¼ ðjm1 ;…; jmm−1Þ, which spans all
the ordered subsets of the index set f2;…; ng with (m − 1)
distinct elements, and we have included in general a
sequence of rational exponents fμmgn−1m¼2, with μ2 ≡ 1,
which can regulate the weight assigned to the different
m-partite contributions.
Our main conjecture is that inequality (5), and its

variants for different choices of the focus qubit, hold
simultaneously for arbitrary pure states jψi of n qubits,
provided one adopts a suitable definition of the m-partite
quantities fτðmÞ; μmg. We remark that, for a given choice of
the involved entanglement monotones (tangles), the expres-
sion in Eq. (5) yields a whole class of monogamy
constraints, parametrized by the powers μm. Any nontrivial
selection of the sequence fμmgn−1m¼2 with μ2 ≡ 1 defines in
fact a particular SM inequality, sharpening and generalizing
the CKWone. Clearly, the verification of Eq. (5) given a set
fμ⋆mg implies its validity for all fμmg≽fμ⋆mg. For this
reason, in order to establish the sharpest instance, one
should aim to prove the inequalities by fixing each μm to be
as small as possible, with μm ¼ 1∀m being the minimal
choice. We will specify the adopted choices of the
parameters μm in the subsequent analysis.
Interestingly, a constraint like Eq. (5) was shown to hold

for the distribution of entanglement in permutationally
invariant continuous variable Gaussian states, leading to an
operational quantification of genuine n-partite entangle-
ment [20]. This gives a strong hint that a similar sharing
structure should hold for entanglement in finite-
dimensional systems too, although no supporting evidence
was obtained prior to this work.

Setting up the notation.—Here we adopt the following
prescriptions. First, we define the pure-state residual
n-tangle τðnÞ as the difference between the left- and
right-hand side in Eq. (5):

τðnÞq1jq2j���jqnðjψiÞ ≔ τð1Þq1jðq2���qnÞðjψiÞ

−
Xn−1
m¼2

X
~jm

½τðmÞ
q1jqjm

1
j���jqjm

m−1
ðjψiÞ�μm: ð6Þ

In this way, the conjectured SM inequality (5) is recast into

the non-negativity of the residual, τðnÞq1jq2j���jqnðjψiÞ ≥ 0,

where the ordering of the subscripts in Eq. (6) reflects
the choice of the focus qubit, which occupies the first slot
(we do not expect permutation invariance for n > 3). Next,
we extend the residual n-tangle τðnÞ to a mixed state ρ of n
qubits via a convenient and physically motivated convex
roof procedure:

τðnÞq1jq2j���jqnðρÞ ≔
�

inf
fpr;jψ rig

X
r

pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τðnÞq1jq2j���jqnðψ rÞ

q �
2

; ð7Þ

where the minimization is taken over all possible pure-state
decompositions of the state ρ ¼ P

rprjψ rihψ rj. For n ¼ 3,
the definition (7) reduces to the mixed-state extension of
the three-tangle τð3Þ as defined in Ref. [21], which is an
entanglement monotone [1,12,15] and an invariant under
stochastic local operations and classical communication
(SLOCC) [3,21–23]. For n ¼ 2, we recover the standard

pairwise tangle, τð2Þqijqj ¼ C2
qijqj , with the concurrence

[13,14] defined as Cqijqj ¼ maxf0; λ1 − λ2 − λ3 − λ4g,
where fλjg are the square roots of the eigenvalues
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(in decreasing order) of the matrix R ¼
ρijðσy ⊗ σyÞρ�ijðσy ⊗ σyÞ, the star denoting complex con-
jugation in the computational basis, σy being the Pauli y
matrix, and ρij being the marginal state of qubits qi and qj
obtained by partial tracing over the remaining qubits.
Finally, we use Eqs. (6)–(7) to define, in a recursive
way, every m-partite term τðmÞ (for m ≥ 2) appearing in
the n-qubit SM inequality (5), in terms of the corresponding
residual m-tangle rescaled by a suitable exponent μm.
Proving the SM conjecture for n qubits appears in

general a formidable challenge. Namely, at variance with
the CKW case, the m-tangles defined above are not
expected to enjoy a closed formula on the marginal
m-qubit mixed states for m ≥ 3. Nonetheless, in the
following we verify the conjecture analytically on relevant
multiqubit states, and we achieve significant progress on
arbitrary states of four qubits (n ¼ 4), for which we provide
a comprehensive collection of analytical and numerical
evidence in support of the SM hypothesis.
Analytical example: GHZ and W superpositions.—We

begin by investigating the SM constraint (5) in its sharpest
form (μm ¼ 1∀m), on permutationally invariant states
defined as superpositions of W and generalized
Greenberger-Horne-Zeilinger (GHZ) states of n ≥ 4 qubits

jΦn
α;β;γi ≔ αj0ni þ βjWni þ γj1ni ð8Þ

with α, β, γ ∈ C, jαj2 þ jβj2 þ jγj2 ¼ 1, where jWni ¼
1=

ffiffiffi
n

p ðj0n−11i þ � � � þ j10n−1iÞ is the n-qubit W state,
jΦn

1=
ffiffi
2

p
;0;1=

ffiffi
2

p i is the n-qubit GHZ state, and xn denotes

the string with n equal symbols x. Noting that we
can rewrite the states as jΦn

α;β;γi¼ j0n−miðαj0miþffiffiffiffiffiffiffiffiffi
m=n

p
βjWmiÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn−mÞ=np
βjWn−mij0miþ γj1n−mij1mi,

for 1 ≤ m ≤ n − 1, where jW1i≡ j1i, and observing in
particular that for γ ¼ 0 all residual multipartite terms
vanish, τð1ÞðjΦn

α;β;0iÞ ¼ ðn − 1Þτð2ÞðjΦn
α;β;0iÞ, we obtain the

following inductive result. Assume the SM inequality (5)
holds for arbitrary pure states of m < n qubits, then
for the n-qubit states jΦn

α;β;γi one has τð1Þ ¼
4=n2½n2jαj2jγj2þðn−1Þjβj2ðjβj2þnjγj2Þ�, τð2Þ≤4jβj4=n2,
τðn−1Þ ≤ ð4=nÞjβj2jγj2, τðmÞ ¼ 0 for 2 < m < n − 1.
Substituting these into Eq. (6), one finds

τðnÞq1j���jqnðjΦn
α;β;γiÞ ≥ 4jαj2jγj2 ≥ 0, which proves the SM

inequality (5) for the n-qubit states of Eq. (8). As the
SM clearly holds for three-qubit states, this yields a
complete analytical SM proof for generalized GHZ and
W superpositions jΦ4

α;β;γi of n ¼ 4 qubits, which embody
archetypical representatives of genuine multiparticle
entanglement.
Four-qubit strong monogamy: toolkit.—Motivated by

the above result, we now analyze arbitrary pure states jψi of
four-qubit systems (n ¼ 4). Here, a preliminary numerical
exploration reveals that the choice μm ¼ 1 in Eq. (5) is too

strong to hold, as it leads to negative residual four-tangles
on a small subset of states [24]. Therefore, we focus on
testing the SM inequality for a successive level of the
hierarchy; namely, we set μm ≔ m=2 (m ≥ 2). Sticking
with q1 as focus qubit, and according to our adopted
conventions, the SM inequality (5) then specializes to (see
Fig. 1 for a graphical representation)

τð1Þq1jðq2q3q4Þ ≥ τð2Þq1jq2 þ τð2Þq1jq3 þ τð2Þq1jq4 þ ½τð3Þq1jq2jq3 �3=2

þ ½τð3Þq1jq3jq4 �3=2 þ ½τð3Þq1jq2jq4 �3=2; ð9Þ

where we omitted the state (jψi) for brevity.
All the quantities in Eq. (9) are well defined. The

bipartite terms τðmÞ with m ¼ 1; 2 are all computable as
described above, and the tripartite terms τð3Þ are to be
evaluated on the reduced rank-2 mixed state ρijk of qubits
qi, qj, and qk, via the prescription in Eq. (7). Let us recall
that the three-tangle of three-qubit pure states jψi admits
the following closed expression [12]:

τð3Þq1jq2jq3ðjψiÞ ¼ 4jc2000c2111 þ c2001c
2
110 þ c2010c

2
101 þ c2100c

2
011

− 2ðc000c111c001c110 þ c000c111c010c101

þ c000c111c100c011 þ c001c110c010c101

þ c001c110c011c100 þ c100c011c010c101Þ
þ 4ðc000c011c101c110 þ c111c100c010c001Þj;

ð10Þ
where we have expanded the state jψi in the computational
basis as jψi ¼ P

1
r;s;t¼0 crstjrsti. However, to date, there is

no closed formula for the three-tangle of three-qubit mixed
states. The minimization in Eq. (7) has been solved only for
special families of states [22,25–27], while a semianalytic

method to determine when τð3Þqijqjjqk vanishes is generally

available for rank-2 states such as ρijk [25]. We then resort
to looking for tractable upper bounds to the tripartite terms

[25,27–30], say τð3Þ upqijqjjqk ≥ τð3Þqijqjjqk. A lower bound to the

residual four-tangle of Eq. (6) is then, for a four-qubit
state jψi,

τð4Þ lowq1jq2jq3jq4 ≔ τð1Þq1jðq2q3q4Þ −
X4
j¼2

τð2Þq1jqj −
X4
k>j¼2

½τð3Þupq1jqjjqk �3=2;

ð11Þ
and the SM inequality may then be verified by proving that

τð4Þ lowq1jq2jq3jq4 ≥ 0. We will exploit in particular the bound

FIG. 1 (color online). Strong monogamy of four-qubit
entanglement.
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recently introduced by Rodriques, Datta, and Love (RDL)
[30] in terms of the so-called bestW-class approximation of
three-qubit states ρijk [31]. For each rank-2 three-qubit state
ρijk ≡ ρ, which can be written in its spectral decomposition
as ρ ¼ λj1ih1j þ ð1 − λÞj2ih2j, one can construct an asso-
ciated simplex S0 containing states with vanishing three-
tangle, obtained as mixtures of (up to) four pure W-class
states jZli (l ¼ 1;…; 4) [31]. The latter take the form
jZli ¼ ðj1i þ zlj2iÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzlj2

p
, where zl ∈ C are the

complex roots of the fourth-order equation
τð3Þðj1i þ zj2iÞ ¼ 0, defined via Eq. (10) [25]. If the
rank-2 state ρ belongs to the simplex S0, then
τð3ÞðρÞ ¼ 0. More generally, one can bound the three-tangle
from above as follows. Defining the uniform mixture
π ¼ 1

4

P
4
l¼1 jZlihZlj, there exists a κ > 0 such that

jϕihϕj ≔ ρþ ðκ=∥ρ − π∥1Þðρ − πÞ describes a pure
three-qubit state [30], where ∥X∥1 ¼ Tr

ffiffiffiffiffiffiffiffiffi
X†X

p
denotes

the trace norm. One has then

τð3ÞðρÞ ≤ τð3Þ upðρÞ ≔ ∥ρ − π∥21
∥jϕihϕj − π∥21

τð3ÞðjϕiÞ; ð12Þ

where τð3ÞðjϕiÞ can be computed from Eq. (10).
Four-qubit strong monogamy: results.—For four qubits,

there are infinitely many inequivalent SLOCC classes [3]
(unlike the case of three qubits [15]); however, a particu-
larly insightful classification into nine groups was derived
by Verstraete et al. [21], who showed that, up to

permutations of the four qubits, any pure state jψi can
be obtained as

jψi ¼ ðA1 ⊗ A2 ⊗ A3 ⊗ A4ÞjGxi; ð13Þ

where fAkg ∈ SLð2;CÞ are SLOCC operations with
detðAkÞ ¼ 1, and each jGxi denotes a normal-form family
of states, representative of the corresponding xth class, with
x ¼ 1;…; 9 (see Table I for their definition); only class-1
states are generic.
We verified the proposed SM inequality (9) for the

normal-form representatives jGxi of all the nine classes, by
obtaining suitable analytic upper bounds to the τð3Þ terms in
all the three-qubit marginal partitions, as presented in
Table I. Combining these bounds with the easily comput-

able one-tangles τð1ÞðqijqjqkqlÞ, and with the expressions of the

reduced two-tangles τð2Þqijqj (not reported here), we obtained

lower bounds to the residual τð4Þqijqjjqkjql defined as in

Eq. (11), which were found to be non-negative for all
the nine families of states. These are plotted in Fig. 2(a) for
some typical instances of jGxi with x ¼ 2;…; 6. The other
cases are straightforward, in particular for jG1i and jG7i all
the reduced three-tangles vanish, so the SM reduces to the
conventional inequality (4).
We complement this collection of analytical results with

a numerical exploration of arbitrary four-qubit states jψi.
Precisely, we generated them according to the prescription

TABLE I. Normal-form representatives of the nine four-qubit SLOCC classes defined in Ref. [21], and upper bounds to the three-
tangle of their marginal three-qubit partitions qijqjjqk; here, a, b, c, d are complex parameters with non-negative real parts.

Normal-form states jGxi (unnormalized) Bounds to the reduced three-tangles τð3Þ

jG1
abcdi ¼ ðaþ dÞ=2ðj0000i þ j1111iÞ

þ ða − dÞ=2ðj0011i þ j1100iÞ
þ ðbþ cÞ=2ðj0101i þ j1010iÞ
þ ðb − cÞ=2ðj0110i þ j1001iÞ

τð3Þqijqjjqk ¼ 0

jG2
abci ¼ ðaþ bÞ=2ðj0000i þ j1111iÞ

þ ða − bÞ=2ðj0011i þ j1100iÞ
þ cðj0101i þ j1010iÞ þ j0110i

τð3Þqijqjjqk ≤ 4ja2 − b2jjc2j=ðjaj2 þ jbj2 þ 4jcj2Þ2

jG3
abi ¼ aðj0000i þ j1111iÞ þ bðj0101i þ j1010iÞ

þ j0110i þ j0011i
τð3Þq1jq2jq3 ¼ τð3Þq1jq3jq4 ¼ 0, τð3Þq1jq2jq4 ¼ τð3Þq2jq3jq4 ≤ 4jajjbj=ð1þ jaj2 þ jbj2Þ2

jG4
abi ¼ aðj0000i þ j1111iÞ

þ ðaþ bÞ=2ðj0101i þ j1010iÞ
þ ða − bÞ=2ðj0110i þ j1001iÞ
þ ði= ffiffiffi

2
p Þðj0001i þ j0010i

þ j0111i þ j1011iÞ

τð3Þqijqjjqk ≤ 2ja2 − b2j=ð2þ 3jaj2 þ jbj2Þ2

jG5
ai ¼ aðj0000i þ j0101i þ j1010i þ j1111iÞ

þ ij0001i þ j0110i − ij1011i
τð3Þq1jq2jq3 ¼ τð3Þq1jq3jq4 ≤ 16jaj2=ð3þ 4jaj2Þ2, τð3Þq1jq2jq4 ¼ τð3Þq2jq3jq4 ≤ 4=ð3þ 4jaj2Þ2

jG6
ai ¼ aðj0000i þ j1111iÞ þ j0011i

þ j0101i þ j0110i
τð3Þq1jqjjqk ¼ 0, τð3Þq2jq3jq4 ≤

� jajðjaj3−4Þ2
ð2jaj2þ3Þ2 jaj < 22=3

0 jaj ≥ 22=3

jG7i ¼ j0000i þ j0101i þ j1000i þ j1110i τð3Þqijqjjqk ¼ 0

jG8i ¼ j0000i þ j1011i þ j1101i þ j1110i τð3Þq1jqjjqk ≤
1
4
, τð3Þq2jq3jq4 ¼ 0

jG9i ¼ j0000i þ j0111i τð3Þq1jqjjqk ¼ 0, τð3Þq2jq3jq4 ¼ 1

PRL 113, 110501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 SEPTEMBER 2014

110501-4



in Eq. (13), by the application of random SLOCC oper-
ations on jGxi states with randomized parameters (a
Gaussian distribution was used to generate the matrix
elements of SLOCC operations on each qubit, and a
uniform distribution in a bounded interval was used to
generate the complex parameters in the states jGxi). We
tested 106 states per class, and on each state we computed
the lower bound τð4Þ lowqijqjjqkjql for all four independent permu-
tations of fijklg, using the semianalytical RDL method
[30] to bound the marginal three-tangles in all relevant
three-qubit partitions via Eq. (12). Overall, this amounts to
3.2 × 107 tested data points across all the different classes
(class-9 states are excluded since for them q1 is separable
from the rest, so the SM constraint reduces to the CKWone
for q2, q3, q4, which needs no testing). As Fig. 2(b) shows,
no negative values of τð4Þ low were found, providing a
strongly supportive evidence for the validity of the SM
inequality (9) on arbitrary four-qubit states.
Conclusion.—We proposed and analyzed a novel class of

monogamy inequalities for multiqubit entanglement, which
extend and sharpen the existing ones [12,16]. We proved
our SM relation on relevant families of states, and verified it
numerically on arbitrary pure states of four qubits spanning
all the different SLOCC classes of Ref. [21].
This Letter opens an avenue for further investigation.

First, a closed formula for the three-tangle of rank-2 states
of three qubits [22,25,26] could facilitate a general ana-
lytical proof of inequality (5) for n ¼ 4. More generally,
would other entanglement measures that satisfy conven-
tional monogamy—such as the squashed entanglement
[32])—obey SM-type inequalities too, for arbitrary multi-
partite states of n qudits? The standard CKW-type
monogamy [12,16] inspired remarkable applications to
quantum cryptography [1] and the characterization of
quantum critical points in many-body systems [2]. This

work reveals more severe limitations on the sharing of
multiple forms of entanglement, and is a starting point
towards a quantification of those essential features of
quantum correlations, which only emerge beyond the
bipartite scenario. It will be fascinating to investigate the
interplay between the SM tradeoff and frustration phenom-
ena in complex quantum systems [33–35].
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