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Distillation, or purification, is central to the practical use of quantum resources in noisy settings often
encountered in quantum communication and computation. Conventionally, distillation requires using some
restricted “free” operations to convert a noisy state into one that approximates a desired pure state. Here, we
propose to relax this setting by only requiring the approximation of the measurement statistics of a target
pure state, which allows for additional classical postprocessing of the measurement outcomes. We show
that this extended scenario, which we call “virtual resource distillation,” provides considerable advantages
over standard notions of distillation, allowing for the purification of noisy states from which no resources
can be distilled conventionally. We show that general states can be virtually distilled with a cost
(measurement overhead) that is inversely proportional to the amount of existing resource, and we develop
methods to efficiently estimate such cost via convex and semidefinite programming, giving several
computable bounds. We consider applications to coherence, entanglement, and magic distillation, and an
explicit example in quantum teleportation (distributed quantum computing). This work opens a new avenue

for investigating generalized ways to manipulate quantum resources.
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One important aspect in the manipulation of any
valuable physical resource is distillation—a means to
extract this resource in optimal, purified form from some
crude, noisy source. This finds use in quantum information
processing, where various quantum resources [1-3]—
entanglement [4—6], coherence [7-9], or magic [10-12],
among many others—have gained interest for their role in
empowering various quantum information protocols [1-3].
However, the inevitable imperfections that permeate near-
term quantum technologies mean that noiseless resources
may not be readily available. Thus, distillation of such
resources is critical for developing practical quantum
computation and communication schemes, allowing for
systematic means to obtain ideal resources from ones
distorted by noise.

Powerful theoretical results have been obtained for both
one-shot and asymptotic resource distillation [13-28]. Yet,
especially in the one-shot scenario, strong limitations exist
that prohibit resource distillation even from highly
resourceful states, either demanding many copies of the
resource state to enable a successful conversion, or incur-
ring large errors in the process [22,24,25,28]. While those
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results are fundamental no-go theorems based on the laws
of quantum mechanics, could there nevertheless be means
to sidestep them by somewhat bending the rules?

Here, we give an affirmative answer to this question by
proposing a new paradigm of virtual resource distillation.
Since the output of many quantum information protocols is
ultimately purely classical, it often does not matter whether
a particular ideal resource state (e.g., a Bell state) was
actually synthesized, provided we can reproduce the same
expected outcome statistics. Therefore, we focus on dis-
tilling a “virtual” target resource state, in the sense that any
operation followed by a measurement of the target resource
can be approximated to a desired accuracy. This combines
the power of both classical data processing and resource
manipulation, performing better than either of these two
approaches on their own. We show that virtual distillation
enables us to effectively increase the distillation efficiency
at an increased cost in the measurement samples. We study
properties of the distillation overhead and show how it can
be tightly bounded using resource monotones and semi-
definite programs. We show that various limitations on
distillation schemes can be circumvented by employing our
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framework, enabling distillation even from states from
which no resource can be extracted conventionally. We
give examples in the virtual distillation of coherence,
entanglement, and magic, and discuss applications.

Here, we focus on the case where the manipulated
objects are quantum states, and we leave the broader
framework and complete technical proofs to the companion
paper [29].

Background.—A resource theory of states consists of the
set F of free states and the set O of free operations. A weak
and undemanding assumption about the free operations
A€ QO is the so-called “golden rule,” which states that
A(o) € F forall 6 € F. The set of all operations that satisfy
the golden rule, called resource nongenerating operations,
is then the largest consistent set of free operations. A
resource monotone yu is a function that measures the
amount of resource a state possesses, satisfying the
monotonicity requirement u(p) > u(A(p)), VA€ O.

In most resource theories, we can define an optimal unit
pure resource state, denoted as y. Distillation then captures
the task of synthesizing y from an imperfect state p. The
one-shot resource distillation rate

Do) = sup {m: L 1AG) -~ < } )

then defines number of optimal states we can synthesize

with p at allowable error € € [0, 1). Here, ||A]|;, = Tr[VATA]
is the trace norm.

Virtual resource distillation.—In many settings, distil-
lation is followed by a processing of the state y to produce
an expectation value x of some observable. Thus, y does
not strictly need to actually exist: a simulation of y that
enables accurate retrieval of x is sufficient. We will thus
assume that the state is ultimately measured. This contrasts
with conventional distillation, where y is always syn-
thesized physically.

Formally, consider a task that involves applying some
operation A/ on the resource state (possibly together with
other states), and measuring the resulting state in some

FIG. 1.

observable M to retrieve x. In order for a distillation
protocol A to be successful, we thus require that measuring
NoA(p) approximates the measurement outcomes of
N (w®m) for any choice of a channel A/ and measurement
M. Since applying a channel N cannot make the error any
larger, our requirement for distillation is in fact equivalent
to the statement that [TrMA(p) — TrMy®™| < ¢ for any
Hermitian operator M satisfying 0 < M < I. This condition
is the same as the one for conventional distillation in
Eq. (1), so we have gained no advantage. However, since
TrMA(p) is a classical result, we can further apply classical
postprocessing with different distillation operations.
Specifically, we can consider a linear combination of the
classical results >, 4;Tr(MA;(p)) = Tr(M }; A;A;(p))
using different choices of {A;} C O and real coefficients
A; satisfying j#4; = 1. Grouping free operations with
the same sign together, we have |Tr[M(1, A, (p)—
/1_/\_(/)))] _Ter//®m| <e, where /1:t = Zj:sign(j)::tllj >0,
Ay —A_=1,and Ay = (1/24) Zj:Sign(D:ﬂ AjA;. This is
equivalent to the virtual distillation condition

[A(p) —w®™"||; <e. (2)

N[ =

where we define A = A, A, —A_A_ to be a virtual oper-
ation; see also Fig. 1. We note that the condition is
independent of the operation A/ or measurement M.

In practice, we can effectively implement A by following
a Monte Carlo-based approach that often finds use in the
simulation of quantum circuits [12,30-34], quantum error
mitigation [35-37], and the implementation of unphysical
processes [38—40]. The basic idea is to notice that for
any M, we have TrMA(p) = Clsign(A,)p,TrtMA_(p) +
sign(A_)p_TrMA_(p)]. Therefore, we can obtain
TrMA(p) by randomly applying A, with probability p, =
A+/(A, +A_) and multiply each classical outcome by
Csign(AL) = £1. Here, C:=1, +_ > 1 contributes to
a larger variance of the outcome distribution. This essen-
tially increases the number of samples by a factor of C?

(b)

M
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Tr MA(p)
&
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Two different approaches to resource distillation. (a) Conventional resource distillation employs a free operation A to map p

into a state that approximates the target state ®™. (b) Virtual distillation approximates the measurement outcomes of y®™ by using the
virtual operation A = A, A, —A_A_, a linear combination of free operations.
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compared to the case of conventional distillation where
resource states y®™" are available [41]. This means that the
effective number of y virtually obtained as A(p) is reduced
by a factor of 1/C? for the purpose of estimating the
expectation value of an observable with the desired
accuracy.

This observation motivates us to define the virtual
resource distillation rate as

Ve(p) = sup ; (3)

m C(p,m)?

with the overhead C*(p, m) of virtual operations

C¢(p,m) = inf
A=ty Ay -1 Ao
Ak =1
Ay €00

1 -
{z+ it LR G) - < }

(4)

The virtual distillation rate V¢ generalizes the conventional
one-shot distillation rate D¢, recovering the latter when
optimization in (4) is restricted to the case of A_ = 0. This
immediately implies that D®(p) < V¢(p). Since V*(p) is
fully determined by C*(p, m), we focus on the estimation of
C%(p, m) in the following.

We note here two major differences between the settings
of virtual and conventional distillation. First, our approach is
to perform distillation by repeatedly applying free oper-
ations to a noisy resource state to obtain a sufficient number
of samples. This is very different from conventional dis-
tillation protocols used in practice, which work by employ-
ing joint operations on multiple copies of a state [13,43].
Coherent many-copy manipulation through joint operations
is experimentally much more difficult to realize, often
making resource distillation challenging or inefficient in
practice. Virtual distillation overcomes this by only requiring
single-copy operations. Our approach can also be compared
with probabilistic one-shot distillation protocols in the
conventional case, which also repeatedly realize single-copy
operations; we address this in more detail in [29]. We will
shortly see that virtual distillation does not suffer from
limitations that constrain conventional (including probabi-
listic) distillation in equivalent settings.

A second, perhaps counterintuitive difference is that
virtual distillation allows for the distillation from free
(resourceless) states at a nonzero rate. This becomes
possible as we relaxed the distillation requirement to only
approximate the outcome statistics: for a free input state,
our method essentially reduces to classical data processing,
and simply reflects that the cost of classically simulating
the target state y using free states F is not infinite.

Estimation of C¢(p,m).—We introduce bounds on
C¢(p,m) in general resource theories, which rely on two
ingredients. First, we introduce the optimization problem

C3(p, k) == minimize p, +pu_

st. 050, <pu,l, 0<Q_<u_l,
TrQ+6§ﬂ—]:, TI’Q_GS/% VoeF,
po—p-=1, Trp(Q, -0 )>1-¢, (5)

where k is some parameter to be fixed. We also define
{I(p,k) to be the same optimization except that the
inequality constraints in the second line become equality
constraints: TrQ o = u, /k, TrQ_oc = u_/k Yo € F. The
second ingredient are three different resource measures
for the target pure resource state y: the generalized
robustness R%(p) :=inf {1|[(p +lw)/(1+1)|€F.w€D},
the standard robustness R (p) := inf {1|[(p + 16)/
(1 +2)]eF.,oceF}, and the resource fidelity Fr(p) =

max, ¢ 7(Tr\/p'26p'/%)*. Here, D is the set of all density
matrices. Our first main result is as follows.

Theorem 1 (Theorem 1 in companion paper [29]).—
Consider a convex resource theory and a target pure resource
state . Let O be the class of resource nongenerating
operations. If R%(y)<oo, then (i(p,Fr(w®")™)<
Cé(p.m) < £(p,R5:-(w®")+1). Furthermore, if it holds
that (wloly) is constant for all o€F, then
Cp, Fr(w®")™") < C(p,m) < C(p, RE(w®™) + 1).

The crucial property of the bounds is that whenever
RS- (y®") + 1 = Fr(py®")~'—which is true in resource
theories such as bi- and multipartite entanglement or
multilevel quantum coherence—or if R%(y®")+ 1 =
Fz(w®m)~! and the overlap (y|o|w) is constant—which
is true in resource theories such as coherence or athermality—
then the upper and lower bounds coincide, yielding an exact
expression for the overhead C*(p, m), i.e.,

Ce(p.m) = ¢/ (p. Fr(w®™)™). (6)

Recall that the problems (¥ are convex optimization
problems and are often (e.g., for coherence, magic states,
or nonpositive partial transpose) semidefinite programs,
which are efficiently computable in the dimension of the
state space [44], allowing for an exact evaluation of C* in
relevant cases. Importantly, they remove the need to optimize
over all operations A € O, which may be a significantly more
difficult problem.

We note that the question of whether there exist suitable
states for which the two bounds coincide is, in general,
highly dependent on the resource theory in question [29].

Next, we show that the overhead is not only computable
numerically, but in fact an exact expression for it can be
obtained in terms of another resource monotone, f»(p, m),
which measures the maximum overlap between A(p) and
W@m as

folp,m) = maxTr[A(p)y®"]. (7)
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FIG. 2. Comparison between conventional and virtual one-shot resource distillation. We consider four different smoothing parameters
e ={0,0.02,0.04,0.08} corresponding to each of the four lines (with the same color or dot type) from bottom to top. (a) Distillation
from the four-dimensional coherent state p,, = pyy, + (1 — p)I4/4 under MIO and DIO. Here, |y4) = (|0) + [1) +{2) +[3))/2 and I4
is the four-dimensional identity matrix. We also consider virtual distillation with different m as in Eq. (3) and find that m = 2
outperforms the others for most cases (except for very small p where m = 1 performs the best). (b) Distillation of the two-qubit
entangled state p, = py + (1 — p)l4/4 under SEPP operations. Here, [y) = (|00) + [11))/ v/2), and the virtual distillation rate is
achieved with LOCC already. (c) Distillation of the noisy magic state p, = pT + (1 — p)I,/2 under stabilizer operations. The magic
state T is defined as T = % (I + [X + Y]/+/2), where X and Y are Pauli matrices. The virtual distillation rates for (b) and (c) are obtained
with m =1 as in Eq. (3). We note that virtual distillation also outperforms probabilistic distillation for these examples. See [29]

for details.

This is useful because f» has been computed exactly in
many relevant cases [15,19,21,45-47]. Such an equivalence
will be possible whenever there exists a free “generalized
twirling” operation [27] 7 €O of the form 7 (p) =
Trw®"ply®™ + Tr[(I — y®")plo* for some o*€F,
which is true for many resource theories of practical
interest, such as entanglement and magic theory for specific
target states.

Theorem 2 (Theorem 2 in companion paper [29]).—
Suppose a free generalized twirling operation exists. Then

2(1-¢)
folp,m) 1’1}'

Reference [27] showed that the existence of a suitable
resource nongenerating twirling operation is guaranteed
when Fx(y®")~! equals 1 + R-(y®™). We thus have an
alternative characterization of C¢(p,m) via the resource
monotone f»(p,m): whenever the condition F £ (y®")~! =
1+ RS- (w®™") is satisfied, C?(p, m) under resource non-
generating maps is given exactly by Eq. (8).

We note that while Theorem 1 provides an exact
characterization of the virtual distillation overhead without
the need for an explicit optimization over the allowed free
operations, Theorem 2 is applicable also for general sets of
free operations that are weaker than resource nongenerating
operations. These results may therefore be applicable to
complementary scenarios.

Surpassing conventional limitations.—Distillation in the
conventional sense is constrained by many no-go theorems
that restrict what transformations can be achieved in certain
regimes. Consider zero-error distillation (¢ = 0). In this

. m) = man | (8)

case, conventional distillation protocols have significant
limits: they cannot, for example, distil any pure states from
states that are highly mixed (full or almost full rank,
depending on the theory) [22,24,25], not even when many
copies of input states are available, and not even proba-
bilistically [22,28]. Virtual distillation suffers from no such
no-go limitation: even full-rank states allow for distillation
with a finite overhead cost. An even stronger limitation
constrains the one-shot distillation from isotropic states p,,
in theories such as quantum entanglement, coherence, or
magic. No free operation can improve the fidelity of p,
with a maximally resourceful state, making distillation
impossible from a single copy of p,, for all small values of
€ [14,48]; virtual distillation allows one to surpass such
restrictions.

Figure 2 illustrates this capability in contexts of coher-
ence, entanglement, and magic. Here, we compare the
virtual distillation rate with the conventional case for the
three types of resources, demonstrating the lack of a noise
threshold that makes the conventional rate diminish to
zero, and a more continuous dependence of the virtual
distillation rate on the smoothing parameter ¢. In the case
of coherence [7-9,19], we employ maximally incoherent
operations (MIOs) and dephasing-covariant incoherent
operations (DIOs) and apply Theorem 1 to determine the
overhead for MIOs and DIOs. For entanglement [4-6,17],
we determine the overhead using Theorem 2 for any
arbitrary subset of separability-preserving (SEPP) opera-
tions that contains local operation and classical communi-
cation (LOCC). For magic [10-12], we examine stabilizer
operations and obtain an exact formula for the overhead, as
explained in the companion paper [29].
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Applications.—We first consider an application in quan-
tum teleportation, where entanglement is a critical resource.
Given noisy entangled states, conventional resource dis-
tillation generally assumes multiqubit operations on many
copies of the noisy state and the existence of quantum
memory. Our virtual distillation protocol serves as a more
experimentally friendly alternative without these challeng-
ing requirements. For example, consider the noisy state
pas(p) = pyap + (1= p)ly/4 with |y),p = (|00)4p +
|11) 43)/V/2. For p>1/3 (and assuming & =0), we
could virtually distill puyp as Alpug(p)]=[4/(1+
3p)IA L lpas(p)] = [(3=3p)/(1+3p)|A_[pa(p)], Where
A, is the identity channel and A_(p)= o5 =
(I —w4g)/3. The distillation overhead is C°[p 5(p)] =
min{(7 —3p)/(1 + 3p), 3}. The cost remains a reasonable
constant even if we consider virtual distillation to multiple
noisy entangled states, a relevant case in distributed
quantum computing [49].

Another setting to which our approach immediately applies
is fault-tolerant quantum computation, where it is very natural
to consider classical outcomes of quantum algorithms. It is
then important to understand optimal ways to distill the
underlying resource of magic [11,12]. Multiple proposals
have been made regarding a combination of quantum error
mitigation and error correction methods [50-52]. Our frame-
work encompasses this strategy for magic state distillation as
an application of the general approach of virtual resource
distillation, in particular allowing us to extend the results in
Ref. [50] to more general regimes [29].

Discussion.—We introduced virtual resource distilla-
tion, an extended experimentally friendly framework of
resource distillation that integrates classical linear post-
processing into free operations. In doing so, we provided a
fundamental tool for distilling the resources needed for
quantum advantages in noisy current and near-future
quantum technology. The results are general and appli-
cable to many specific resource theories, such as coher-
ence, entanglement, magic of quantum states, quantum
communication, uniformity, and athermality, as well as any
other resource theory where the target state is pure. We
also detail the much more general setting of virtual
resource distillation of quantum channels and combs in
the companion paper [29], enabling virtual distillation of
non-Markovianity and quantum memory. This work con-
siders discrete-variable resource theories, and an extension
to continuous variables [53,54] would also be interesting.

We thank Suguru Endo, Patrick Hayden, Jayne
Thompson, and Mark M. Wilde for insightful discussions.
This work is supported by the National Natural Science
Foundation of China Grant No. 12175003, NSAF Grant
No. U2330201, the Agency for Science, Technology
and Research (A*STAR) under its QEP2.0 programme
(NRF2021-QEP2-02-P06), the Singapore Ministry of
Education Tier 1 Grant No. RG77/22, the National Research

Foundation, Singapore and the Singapore Ministry of
Education Tier 2 Grant No. MOE-T2EP50221-0005.
B.R. was partially supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant
No. 22KF0067. R.T. was supported by the Lee Kuan
Yew Postdoctoral Fellowship at Nanyang Technological
University Singapore.

*xiaoyuan@pku.edu.cn
"bartosz.re gula@gmail.com
*ryuji.takagi @phys.c.u-tokyo.ac.jp
mgu@quantumcomplexity.org

[1] M. Horodecki and J. Oppenheim, (Quantumness in the
context of) resource theories, Int. J. Mod. Phys. B 27,
1345019 (2013).

[2] B. Coecke, T. Fritz, and R. W. Spekkens, A mathematical
theory of resources, Inf. Comput. 250, 59 (2016).

[3] E. Chitambar and G. Gour, Quantum resource theories, Rev.
Mod. Phys. 91, 025001 (2019).

[4] C.H. Bennett, H.J. Bernstein, S. Popescu, and B.
Schumacher, Concentrating partial entanglement by local
operations, Phys. Rev. A 53, 2046 (1996).

[5] V. Vedral, M. B. Plenio, M. A. Rippin, and P.L. Knight,
Quantifying entanglement, Phys. Rev. Lett. 78, 2275 (1997).

[6] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[7]1 J. Aberg,
0612146.

[8] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying
coherence, Phys. Rev. Lett. 113, 140401 (2014).

[9] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium:
Quantum coherence as a resource, Rev. Mod. Phys. 89,
041003 (2017).

[10] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, Negative
quasi-probability as a resource for quantum computation,
New J. Phys. 14, 113011 (2012).

[11] V. Veitch, S. H. Mousavian, D. Gottesman, and J. Emerson,
The resource theory of stabilizer quantum computation,
New J. Phys. 16, 013009 (2014).

[12] M. Howard and E. Campbell, Application of a resource
theory for magic states to fault-tolerant quantum computing,
Phys. Rev. Lett. 118, 090501 (2017).

[13] C.H. Bennett, H.J. Bernstein, S. Popescu, and B.
Schumacher, Concentrating partial entanglement by local
operations, Phys. Rev. A 53, 2046 (1996).

[14] A. Kent, Entangled mixed states and local purification,
Phys. Rev. Lett. 81, 2839 (1998).

[15] E. M. Rains, A semidefinite program for distillable entan-
glement, IEEE Trans. Inf. Theory 47, 2921 (2001).

[16] F. G.Brandao and M. B. Plenio, Entanglement theory and the
second law of thermodynamics, Nat. Phys. 4, 873 (2008).

[17] F.G.S.L. Brandao and N. Datta, One-shot rates for en-
tanglement manipulation under non-entangling maps, IEEE
Trans. Inf. Theory 57, 1754 (2011).

[18] Q.Zhao, Y. Liu, X. Yuan, E. Chitambar, and X. Ma, One-shot
coherence dilution, Phys. Rev. Lett. 120, 070403 (2018).

Quantifying superposition, arXiv:quant-ph/

050203-5


https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/RevModPhys.91.025001
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://arXiv.org/abs/quant-ph/0612146
https://arXiv.org/abs/quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevLett.81.2839
https://doi.org/10.1109/18.959270
https://doi.org/10.1038/nphys1100
https://doi.org/10.1109/TIT.2011.2104531
https://doi.org/10.1109/TIT.2011.2104531
https://doi.org/10.1103/PhysRevLett.120.070403

PHYSICAL REVIEW LETTERS 132, 050203 (2024)

[19] B. Regula, K. Fang, X. Wang, and G. Adesso, One-shot
coherence distillation, Phys. Rev. Lett. 121, 010401 (2018).

[20] Z.-W. Liu, K. Bu, and R. Takagi, One-shot operational
quantum resource theory, Phys. Rev. Lett. 123,020401 (2019).

[21] B. Regula, K. Bu, R. Takagi, and Z.-W. Liu, Benchmarking
one-shot distillation in general quantum resource theories,
Phys. Rev. A 101, 062315 (2020).

[22] K. Fang and Z.-W. Liu, No-go theorems for quantum
resource purification, Phys. Rev. Lett. 125, 060405 (2020).

[23] M. K. Vijayan, E. Chitambar, and M.-H. Hsieh, Simple
bounds for one-shot pure-state distillation in general re-
source theories, Phys. Rev. A 102, 052403 (2020).

[24] B. Regula and R. Takagi, Fundamental limitations on
distillation of quantum channel resources, Nat. Commun.
12, 4411 (2021).

[25] K. Fang and Z.-W. Liu, No-go theorems for quantum
resource purification: New approach and channel theory,
PRX Quantum 3, 010337 (2022).

[26] B. Regula and R. Takagi, One-shot manipulation of dynami-
cal quantum resources, Phys. Rev. Lett. 127, 060402 (2021).

[27] R. Takagi, B. Regula, and M. M. Wilde, One-shot yield-
cost relations in general quantum resource theories, PRX
Quantum 3, 010348 (2022).

[28] B. Regula, Probabilistic transformations of quantum re-
sources, Phys. Rev. Lett. 128, 110505 (2022).

[29] R. Takagi, X. Yuan, B. Regula, and M. Gu, companion
paper, Virtual quantum resource distillation: General frame-
work and applications, Phys. Rev. A 109, 022403
(2024).

[30] H. Pashayan, J.J. Wallman, and S. D. Bartlett, Estimating
outcome probabilities of quantum circuits using quasiprob-
abilities, Phys. Rev. Lett. 115, 070501 (2015).

[31] J.R. Seddon, B. Regula, H. Pashayan, Y. Ouyang, and E. T.
Campbell, Quantifying quantum speedups: Improved
classical simulation from tighter magic monotones, PRX
Quantum 2, 010345 (2021).

[32] Y. Yang, B.-N. Lu, and Y. Li, Accelerated quantum
Monte Carlo with mitigated error on noisy quantum
computer, PRX Quantum 2, 040361 (2021).

[33] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, Simulating
large quantum circuits on a small quantum computer, Phys.
Rev. Lett. 125, 150504 (2020).

[34] L. Brenner, C. Piveteau, and D. Sutter, Optimal wire cutting
with classical communication, arXiv:2302.03366.

[35] Y. Li and S.C. Benjamin, Efficient variational quantum
simulator incorporating active error minimization, Phys.
Rev. X 7, 021050 (2017).

[36] S. Endo, Z. Cai, S.C. Benjamin, and X. Yuan, Hybrid
quantum-classical algorithms and quantum error mitigation,
J. Phys. Soc. Jpn. 90, 032001 (2021).

[37] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation
for short-depth quantum circuits, Phys. Rev. Lett. 119,
180509 (2017).

[38] E. Buscemi, M. Dall’Arno, M. Ozawa, and V. Vedral, Direct
observation of any two-point quantum correlation function,
arXiv:1312.4240.

[39] J. Jiang, K. Wang, and X. Wang, Physical implementability
of linear maps and its application in error mitigation,
Quantum 5, 600 (2021).

[40] B.Regula, R. Takagi, and M. Gu, Operational applications of
the diamond norm and related measures in quantifying the
non-physicality of quantum maps, Quantum 5, 522 (2021).

[41] Specifically, according to the Hoeffding inequality [42],
Ollog(1/8)/4*] and O[C? log(1/5)/f?] number of samples
can estimate Tr[My®”] and Tr[MA(p)] to achieve an
accuracy f > 0 with a failure probability less than 6 > 0.

[42] W. Hoeftding, Probability inequalities for sums of bounded
random variables, J. Am. Stat. Assoc. 58, 13 (1963).

[43] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71,
022316 (2005).

[44] L. Vandenberghe and S. Boyd, Semidefinite programming,
SIAM Rev. 38, 49 (1996).

[45] F.G.S. L. Brandao and M. B. Plenio, A reversible theory of
entanglement and its relation to the second law, Commun.
Math. Phys. 295, 829 (2010).

[46] B. Regula, K. Fang, X. Wang, and M. Gu, One-shot
entanglement distillation beyond local operations and
classical communication, New J. Phys. 21, 103017 (2019).

[47] Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, and A. Winter,
One-shot coherence distillation: Towards completing the
picture, IEEE Trans. Inf. Theory 65, 6441 (2019).

[48] B. Regula, Tight constraints on probabilistic convertibility
of quantum states, Quantum 6, 817 (2022).

[49] When p4p is a separable state, this represents the cost of
classical simulation. An intuitive yet nonoptimal simulation
protocol would be using state tomography for Alice and
sending the classical density matrix information to Bob. Our
result instead gives an optimal simulation protocol. It is not
hard to see that the overhead would increase consider multi-
round quantum teleportation between different parties, which
reflects the necessity of using entangled states. For example,
consider sequential teleportation from party 0O to party n, the
overhead to simulate perfect teleportation using separable
states would be 3". On the other hand, suppose nearly
entangled states p(¢) = (1 — &)y 4 p + €l4/4 are shared (with
small €), the overhead for simulating n sequential rounds of
teleportation is [1 + 6¢/(4 — 3¢)]" ~ ®%/(4=3) Therefore,
whenever ne = O(1), the overhead is still a constant even for
large n. For example, suppose n =50 and ¢ = 1%, the
overhead is about ¢ ~ 20.

[50] M. Lostaglio and A. Ciani, Error mitigation and quantum-
assisted simulation in the error corrected regime, Phys. Rev.
Lett. 127, 200506 (2021).

[51] C. Piveteau, D. Sutter, S. Bravyi, J. M. Gambetta, and K.
Temme, Error mitigation for universal gates on encoded
qubits, Phys. Rev. Lett. 127, 200505 (2021).

[52] Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, Quantum
error mitigation as a universal error reduction technique:
Applications from the NISQ to the fault-tolerant quantum
computing eras, PRX Quantum 3, 010345 (2022).

[53] B. Yadin, F. C. Binder, J. Thompson, V. Narasimhachar, M.
Gu, and M.S. Kim, Operational resource theory of
continuous-variable nonclassicality, Phys. Rev. X 8,
041038 (2018).

[54] B. Regula, L. Lami, G. Ferrari, and R. Takagi, Operational
quantification of continuous-variable quantum resources,
Phys. Rev. Lett. 126, 110403 (2021).

050203-6


https://doi.org/10.1103/PhysRevLett.121.010401
https://doi.org/10.1103/PhysRevLett.123.020401
https://doi.org/10.1103/PhysRevA.101.062315
https://doi.org/10.1103/PhysRevLett.125.060405
https://doi.org/10.1103/PhysRevA.102.052403
https://doi.org/10.1038/s41467-021-24699-0
https://doi.org/10.1038/s41467-021-24699-0
https://doi.org/10.1103/PRXQuantum.3.010337
https://doi.org/10.1103/PhysRevLett.127.060402
https://doi.org/10.1103/PRXQuantum.3.010348
https://doi.org/10.1103/PRXQuantum.3.010348
https://doi.org/10.1103/PhysRevLett.128.110505
https://doi.org/10.1103/PhysRevA.109.022403
https://doi.org/10.1103/PhysRevA.109.022403
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PRXQuantum.2.010345
https://doi.org/10.1103/PRXQuantum.2.010345
https://doi.org/10.1103/PRXQuantum.2.040361
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1103/PhysRevLett.125.150504
https://arXiv.org/abs/2302.03366
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.1103/PhysRevX.7.021050
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://arXiv.org/abs/1312.4240
https://doi.org/10.22331/q-2021-12-07-600
https://doi.org/10.22331/q-2021-08-09-522
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1137/1038003
https://doi.org/10.1007/s00220-010-1003-1
https://doi.org/10.1007/s00220-010-1003-1
https://doi.org/10.1088/1367-2630/ab4732
https://doi.org/10.1109/TIT.2019.2911102
https://doi.org/10.22331/q-2022-09-22-817
https://doi.org/10.1103/PhysRevLett.127.200506
https://doi.org/10.1103/PhysRevLett.127.200506
https://doi.org/10.1103/PhysRevLett.127.200505
https://doi.org/10.1103/PRXQuantum.3.010345
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1103/PhysRevX.8.041038
https://doi.org/10.1103/PhysRevLett.126.110403

