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Quantum information theory is plagued by the problem of regularizations, which require the evaluation
of formidable asymptotic quantities. This makes it computationally intractable to gain a precise quantitative
understanding of the ultimate efficiency of key operational tasks such as entanglement manipulation. Here,
we consider the problem of computing the asymptotic entanglement cost of preparing noisy quantum states
under quantum operations with positive partial transpose (PPT). By means of an analytical example, a
previously claimed solution to this problem is shown to be incorrect. Building on a previous
characterization of the PPT entanglement cost in terms of a regularized formula, we construct instead
a hierarchy of semidefinite programs that bypasses the issue of regularization altogether, and converges to
the true asymptotic value of the entanglement cost. Our main result establishes that this convergence
happens exponentially fast, thus yielding an efficient algorithm that approximates the cost up to an additive
error ε in time polyðD; logð1=εÞÞ, where D is the underlying Hilbert space dimension. To our knowledge,
this is the first time that an asymptotic entanglement measure is shown to be efficiently computable despite
no closed-form formula being available.
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Introduction—Quantum Shannon theory studies the
fundamental limitations on the manipulation of quantum
information in the presence of external noise. Calculating
those limits often involves computing certain functions that
encapsulate the ultimate capabilities of information car-
riers. Paradigmatic examples include the various capacities
of quantum channels, such as the classical [1,2], quantum
[3–5], private [5,6], and entanglement-assisted [7,8]
capacities, but also the operational entanglement measures
that tell us how much entanglement can be extracted from a
given bipartite quantum state, i.e., the distillable entangle-
ment [9–13], and vice versa, how much entanglement must
be invested to create that state [14–17]. This latter quantity,
the entanglement cost, is the main focus of this work.
With the sole exception of the entanglement-assisted

capacity, all of the above functions are expressed by
regularized formulas, i.e., formulas that involve an explicit
limit n → ∞ over the number of uses of the channel or the
available copies of the state. For example, by the Lloyd-
Shor-Devetak theorem [3–5], the quantum capacity of a

channel N equals QðN Þ ¼ limn→∞ð1=nÞIcðN⊗nÞ, where
IcðN Þ is the coherent information ofN , andN⊗n represents
n parallel uses of N . In stark contrast with classical
information theory, for quantum channels it holds in general
that IcðN⊗nÞ ≠ nIcðN Þ, meaning that evaluating the limit
cannot be avoided. Such nonadditivity is a fundamental
feature ofmost settings encountered in quantum information
[18–23]. Analogously, the entanglement cost of preparing a
state ρ ¼ ρAB using local operations and classical commu-
nication (LOCC) is given by

Ec;LOCCðρÞ ¼ lim
n→∞

1

n
Ef

�
ρ⊗n

�
; ð1Þ

where Ef is the entanglement of formation [11,24]. The
precise nature of these formulas is not so important here;
what is important, however, is that the regularization n → ∞
makes themanalytically hard to control and computationally
intractable. Indeed, on the one hand the dimension of the
quantum system on which N⊗n acts, or to which ρ⊗n

pertains, is exponential in n, quickly rendering numerical
calculations infeasible as n grows; on the other, there is no
guarantee of the quality of the approximation obtained by
stopping at the nth level in any of these formulas—for
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instance, an unboundednmay be required to even check that
the quantum capacity is nonzero [25]. The regularization
thus appears to be an omnipresent curse that stifles almost
every attempt to quantitatively understand the ultimate
limitations of quantum information manipulation.
But is that really so? In this Letter we show how

to overcome this fundamental obstacle in a specific case
by efficiently calculating a type of entanglement cost—
expressed as a regularized quantity—on all quantum states.
To this end, we look at a problem that has been studied by
many authors [26–30], but for which a full solution had not
been found prior to our work: namely, zero-error asymp-
totic entanglement cost under “positive partial transpose”
(PPT) operations. The roots of PPT transformations lie in
the fundamental connection between entanglement and
partial transposition identified by Peres [31] and the
Horodeckis [32,33]. In the context of entanglement
manipulation, PPT operations were introduced in the
pioneering works of Rains [34,35] as a mathematically
natural relaxation of the much more complicated set of
LOCC operations, providing a convenient way to gain
some insights into the latter and, importantly, giving hope
for an easier understanding of some of the fundamental
limits of entanglement transformations. Because of this,
they attracted significant attention in the operational study
of quantum entanglement, but even in this technically
simpler setting the fundamental questions in entanglement
manipulation remained unsolved.
By introducing an efficient algorithm for the evaluation

of the asymptotic PPT entanglement cost, we solve this
long-standing problem and exhibit an entanglement mea-
sure that is both computable and operationally meaningful
for general—pure and mixed—quantum states. This can be
contrasted with other entanglement measures, which are
either defined in terms of operational tasks and thus suffer
from the problem of regularization, making efficient
evaluation impossible, or they are simply abstract math-
ematical constructions with no precise operational mean-
ing. Prior to our work, the PPT entanglement cost was only
known to be computable for a specific class of quantum
states [26] (including pure states, Gaussian states, Werner
states, and two-qubit states [36]), with its value given by a
celebrated entanglement measure known as the logarithmic
negativity [26,37,38]. The logarithmic negativity is one of
the most widely employed entanglement measures, having
found numerous applications in all corners of quantum
physics [39–46], from quantum field theory [39]
to condensed matter [42]. The success of the logarithmic
negativity is due to two main reasons: first, its efficient
computability [37], which makes it highly suitable for
numerical applications, and second, its partial operational
interpretation, which guarantees that it coincides with the
zero-error PPT entanglement cost for this specific class of
quantum states [26]. While encouraging, this partial opera-
tional interpretation is arguably not satisfactory if this

measure is to be applied widely in quantum physics.
Indeed, beyond this restricted class of states the negativity
is not known to be an operational quantity, and it is unclear
whether, e.g., the states considered in [40,41,46] genuinely
belong to the class in question.
It was recently claimed that the PPT entanglement cost

can be computed exactly for all states [27,28], but, as we
show below (see also [47]), this claim relies on some
erroneous assertions. In this work, building on the partial
results of [27,28], we find the correct generalization of the
logarithmic negativity that enjoys the operational interpre-
tation of being the zero-error PPT entanglement cost for all
quantum states. Crucially, our generalization is also effi-
ciently computable, requiring almost the same computa-
tional time as the logarithmic negativity. This opens the
door to numerous applications in quantum physics, serving
as a fully operationally motivated alternative to the neg-
ativity as a computable entanglement quantifier.
Zero-error PPT entanglement cost—The goal of zero-

error PPT entanglement dilution is to prepare n copies of a
given bipartite quantum state ρ ¼ ρAB by consuming as few
singlets Φ2 (i.e., two-qubit maximally entangled states) as
possible and using PPT operations only. Here, a channel Λ
is called PPT if its partial transposition Γ∘Λ∘Γ is also a
valid quantum channel, where Γ is the partial transpose
operation [31] defined as ΓðXA ⊗ YBÞ ¼ XA ⊗ Y⊺

B. We say
that a number R is an achievable rate if for all sufficiently
large n there exists a PPT operation Λn with the property

that ΛnðΦ⊗bRnc
2 Þ ¼ ρ⊗n. By definition, the zero-error PPT

entanglement cost of ρ, denoted as Eexact
c;PPTðρÞ, is the

infimum of all achievable rates R. In this work, we show
how to compute Eexact

c;PPTðρÞ for any quantum state ρ.
In a nutshell, the key reason why many authors [26–30]

have been interested in the problem of entanglement
dilution under PPT operations is that it provides a more
tractable model for the fundamental problem of entangle-
ment dilution under LOCC operations, whose underlying
figure of merit, given by (1), is computationally inacces-
sible in most cases of interest. In general, PPT operations
are a superset of LOCC, but any PPT channel can be
implemented in a stochastic manner by LOCC together
with the assistance of PPT states [35,48]; since it is known
that PPT states possess only a weak form of entanglement
that cannot be distilled [49], such states can be considered
as a “cheap” resource, thus providing intuition for the
PPT operations being a prudent relaxation of the power of
LOCC. Such PPT-based approaches have also attracted
significant attention in other parts of entanglement theory
[34,35,50,51].
Importantly, the optimal performance achievable

under PPT operations also establishes bounds and no-go
limits on what can be achieved under LOCC in practice.
These bounds are often the tightest available, as evidenced
in the contexts of channel capacities [52,53] and entangle-
ment distillation [35]. Let us now consider the task of
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entanglement dilution under LOCC operations, which is
defined as above but with LOCC operations replacing PPT
operations. We denote the corresponding figure of merit by
Eexact
c;LOCCðρÞ. Because of PPT being an outer approximation

to LOCC, it holds that

Eexact
c;PPTðρÞ ≤ Eexact

c;LOCCðρÞ ð2Þ

for all bipartite states ρ ¼ ρAB. Our main result allows
us to calculate the left-hand side, which is particularly
significant because establishing computable lower bounds
on Eexact

c;LOCCðρÞ is a priori difficult, as to do that one needs to
constrain all possible LOCC entanglement dilution proto-
cols. (To prove an upper bound, on the contrary, it suffices
to exhibit an explicit dilution protocol.)
We also remark that, in our definition, “zero error”

means that we require the transformation of Φ⊗bRnc
2 into

ρ⊗n to be realized exactly. This is a model of entanglement
dilution that has been studied before in several different
contexts [16,26,54]. The setting contrasts with definitions
that allow for an asymptotically vanishing error in the
transformation [11,14,16]. However, in the Supplemental
Material (SM) [55] we show that no substantial change
occurs if we require that the error, instead of being exactly
zero, decay to zero sufficiently fast—the relevant figure of
merit is then still Eexact

c;PPT.
Prior work—In a pioneering paper by Audenaert, Plenio,

and Eisert [26], it was shown that the PPT entanglement
cost Eexact

c;PPTðρÞ can be evaluated exactly for all bipartite
states ρ ¼ ρAB that satisfy a condition known as “zero
binegativity” [26,36,67]. Specifically, if jρΓjΓ ≥ 0, where
XΓ denotes the partial transpose ΓðXÞ of an operator X and
jXj ≔

ffiffiffiffiffiffiffiffiffi
X†X

p
is its absolute value, then

Eexact
c;PPTðρÞ ¼ log2kρΓk1≕ENðρÞ: ð3Þ

The expression on the right, EN , is the logarithmic
negativity [37,38], obtained by simply evaluating the trace
norm k · k1 ≔ Trj · j of the partially transposed state. This
framework thus provides a partial operational interpretation
for EN through its equality with the zero-error PPT cost
Eexact
c;PPT for some states. At the same time, Eq. (3) effectively

solves the problem of computing Eexact
c;PPT for states with zero

binegativity because EN is efficiently computable via a
semidefinite program (SDP) [68–70],

ENðρÞ ¼ log2min fTrS∶ − S ≤ ρΓ ≤ Sg: ð4Þ

But what to do for those states that have nonzero
binegativity, i.e., satisfy jρΓjΓ≱0? In their recent works
[27,28,47], Wang and Wilde showed that Eexact

c;PPT can be
expressed as a regularization of another quantity called Eκ.
They then made an even stronger claim that Eκ is in fact

additive, meaning that Eκðρ⊗nÞ ¼? nEκðρÞ holds true for all

bipartite states ρ and all positive integers n, thus completely
eliminating the issue of regularization. This would
imply a general computable solution for Eexact

c;PPT: it would
simply coincide with Eκ, which is computable via an SDP
[27,28,47]. However, in Lemma 1 below we construct a
simple counterexample that disproves the claimed addi-
tivity of Eκ. Its existence shows that in general Eκ ≠ Eexact

c;PPT,
thus invalidating the computable solution claimed
in [27,28] and reopening the question of whether the
asymptotic cost Eexact

c;PPT can be efficiently evaluated.
Further details concerning the claims of [27,28] can be
found in [47].
The equivalence between the regularization of the

quantity Eκ and the PPT entanglement cost revealed in
[27,28] will still prove useful to us, albeit a priori it is not
clear how it could lead to a computable formula for
Eexact
c;PPT—the daunting problem of regularization persists.
Main results—In this work, we completely solve the

problem of computing the asymptotic zero-error PPT
entanglement cost Eexact

c;PPT. To do this, we construct a
converging hierarchy of semidefinite programs that can
be used to calculate Eexact

c;PPT for any given state to any degree
of precision efficiently, i.e., in a time polynomial in the
underlying Hilbert space dimension and in logð1=εÞ, with ε
being the additive error. The key quantities in our approach
are a family of PPT entanglement monotones indexed by an
integer p∈N and given by

Eχ;pðρÞ ≔ log2 χpðρÞ; ð5Þ

where

χpðρÞ≔min
�
TrSp∶ −Si≤SΓi−1≤Si; i¼0;…;p;S−1¼ρ

�
ð6Þ

is an SDP with variables S0;…; Sp. These quantities are
increasing in p for every fixed ρ, and we refer to them as the
“χ hierarchy.” Note also that Eχ;0 ¼ EN , hence Eχ;p can be
regarded as a generalization of the logarithmic negativ-
ity [37,38].
Importantly, we show that the χ hierarchy approximates

the entanglement cost Eexact
c;PPT from below, in the sense that

Eexact
c;PPTðρÞ ≥ Eχ;pðρÞ for all states ρ and all p. The proof of

this fact, which can be found in the SM [55], relies on the
connection between the entanglement cost Eexact

c;PPT and the
regularized form of Eκ shown in [27,28]. Our first main
result, the forthcoming Theorem 1, establishes that this
approximation becomes increasingly tight as p increases,
and the χ hierarchy gives the value of Eexact

c;PPT exactly in the
limit p → ∞. This allows us to replace the limit in the
number of copies n, which is what makes Eexact

c;PPT difficult to
compute, with a limit in the hierarchy level p. This already
provides a “single-letter” formula for the PPTentanglement
cost that no longer suffers from the curse of regularization.
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However, because of the limiting procedure p → ∞, it is
still unclear if the expression can be evaluated easily.
Crucially, in Theorem 1 we also show that calculating
the limit of the χ hierarchy is indeed significantly easier
than evaluating regularized expressions: the convergence to
the true value of Eexact

c;PPT is exponentially fast uniformly on
all states, which opens the way to an accurate calculation of
Eexact
c;PPT in practice.
Theorem 1 (Exact expression of the cost)—For all

bipartite states ρ ¼ ρAB on a system of minimal local
dimension d ≔ min fjAj; jBjg ≥ 2, and all positive integers
p∈Nþ, it holds that

0 ≤ Eexact
c;PPTðρÞ − Eχ;pðρÞ ≤ log2

1

1 −
�
1 − 2

d

�
p ; ð7Þ

entailing that

Eexact
c;PPTðρÞ ¼ lim

p→∞
Eχ;pðρÞ: ð8Þ

The proof of Theorem 1 is outlined in the End Matter,
with full details provided in the SM for interested
readers [55]. Note that for every fixed value of d and
for large p, the approximation error on the right-hand side
of (7) can be estimated as ½1 − ð2=dÞ�pðlog2eÞ. In other
words, the speed of convergence in (8) is exponential in p
and furthermore independent of ρ.
The single-letter formula (8) can be used to establish two

notable properties of the zero-error PPT entanglement cost
Eexact
c;PPT, namely additivity and continuity [55, Secs. III.E, F].

Also, Theorem 1 yields immediately a simple solution in
the qubit-qudit case (d ¼ 2), generalizing Ishizaka’s result
that Eexact

c;PPT ¼ EN for all two-qubit states [36].
Corollary 1—For all states ρ ¼ ρAB on a 2 × n bipartite

quantum system, it holds that

Eexact
c;PPTðρÞ ¼ Eχ;1ðρÞ

¼ log2 min fkSΓ0k1∶ − S0 ≤ ρΓ ≤ S0g: ð9Þ
But the most important implication of Theorem 1 is that

it allows us to construct an efficient algorithm that
calculates Eexact

c;PPT to any desired accuracy. This algorithm
takes as input a bipartite state ρ ¼ ρAB and an error
tolerance ε > 0, and returns as output a number Ẽ such
that jEexact

c;PPTðρÞ − Ẽj ≤ ε. It works as follows: (1) use (7) to
find p large enough so that Eχ;pðρÞ approximates Eexact

c;PPTðρÞ
up to an error ε=2. A value of p ¼ Oðd logðd=εÞÞ is
sufficient. (2) Solve the SDP in (6) up to an (additive)
error ε lnð2Þ=2. Taking the logarithm yields an estimate Ẽ
of Eχ;pðρÞ up to an (additive) error ε=2 [see (5)].
(3) Return Ẽ.
The time complexity of the above algorithm is analyzed

in Theorem 2, which shows the core result of our work: the
zero-error PPT entanglement cost can be efficiently com-
puted. The key observation behind this result is that

climbing the χ hierarchy up to level p introduces only
polynomially many more constraints in the SDP in (5) and
is thus relatively inexpensive.
Theorem 2 (Time to compute the cost)—Let ρ be a

bipartite state on a system of total dimension D and
minimal local dimension d. Then, the above algorithm
computes Eexact

c;PPTðρÞ up to an additive error ε in time

O
�ðdDÞ6þoð1Þpoly logð1=εÞ�: ð10Þ

The proof of Theorem 2 is sketched in the End Matter.
Remarkably, Theorem 2 implies that the time complexity
required to compute Eexact

c;PPT is only marginally larger than
that of computing the logarithmic negativity EN, which is
bounded by the time complexity required for the diago-
nalization of a D ×D matrix—also polynomial in D and
logð1=ϵÞ. In short, while both Eexact

c;PPT and EN can be
computed efficiently, Eexact

c;PPT stands out because, by defi-
nition, it has an operational meaning for all quantum states,
unlike EN .
Our result is the first of its kind for two distinct reasons.

First, because it establishes the efficient computability of an
operationally meaningful asymptotic entanglement mea-
sure (i.e., a distillable entanglement or an entanglement
cost). There is no known algorithm to estimate any other
such measure, not even under the simplifying zero-error
assumption. Second, because efficient computability is
shown without exhibiting a closed-form single-letter for-
mula, but rather by describing a converging SDP hierarchy.
To theextentof ourknowledge, theonlyother case inquantum
information theory where a similar situation arises is in [71,
Theorem 5.1]. However, unlike ours, the algorithm described
there is computationally extremely expensive, featuring an
exponential dependence on d3=ε. More generally, expressing
difficult-to-compute quantities through converging SDP hier-
archies is a technical tool that has found various uses in
quantum information [53,72–76], but such applications typ-
ically do not result in efficiently computable algorithms or
do not yield exact operational results.
Discussion and conclusions—In this Letter, we have

provided a solution to the problem of efficiently calculating
the zero-error PPT entanglement cost of arbitrary (finite-
dimensional) quantum states. To the best of our knowledge,
it is the first time that any operational asymptotic entan-
glement measure is shown to be efficiently computable.
A particularly interesting feature of our construction is that
it does not rely on a closed-form formula, but rather on a
converging hierarchy of semidefinite programs that
approximate the cost from above and below with control-
lable error.
Our solution identifies the correct generalization of the

celebrated logarithmic negativity, which became popular in
quantum physics for its efficient computability, despite
being operationally meaningful only for states with zero
binegativity. In contrast, our entanglement measure,
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limp→∞ Eχ;p, is not only efficiently computable—specifi-
cally, it can be efficiently computed via an algorithm with
almost the same time complexity as the logarithmic
negativity—but it also has operational meaning for all
quantum states through its equality with the zero-error PPT
entanglement cost Eexact

c;PPT. For states with zero binegativity,
our entanglement measure coincides with the logarithmic
negativity, but for other states it can be significantly
smaller.
An open question in our analysis is whether the χ

hierarchy collapses at any finite level for some—or even
all—states. We found examples of states ρ such that
ENðρÞ ¼ Eχ;0ðρÞ < Eχ;1ðρÞ and also Eχ;1ðρÞ < Eχ;2ðρÞ,
but we were not able to ascertain whether there exists in
general a gap between Eχ;2 and Eχ;3. If Eχ;2 ¼ Eχ;3 holds in
general, then this would mean that Eexact

c;PPT ¼ Eχ;2, and thus
the cost could be computed with a simple single-letter
formula. While this would be a considerable simplification
from the analytical standpoint, we stress that it will only
entail a polyðdÞ improvement in the time complexity of
evaluating it numerically.

Note added—The issue with the original argument by
Wang and Wilde that leads to the additivity violation for Eκ

(Lemma 1) is discussed in detail in the erratum [47].
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End Matter

Appendix A: The task—We start by defining Eexact
c;PPT in

rigorous terms. A (quantum) channel Λ∶ X → Y is a
completely positive and trace preserving map taking as
input states of a quantum system X and outputting states
of Y. The set of completely positive maps (respectively,
quantum channels) from X to Y will be denoted as
CPðX → YÞ (respectively, CPTPðX → YÞ). If X ¼ AB
and Y ¼ A0B0 are both bipartite systems and
Λ∈CPðAB → A0B0Þ, we say that Λ is PPT if ΓB0∘Λ∘ΓB
is still completely positive, where ΓB denotes the partial
transpose on B, and analogously for ΓB0. Another way to
understand this class of channels is to realize that they
completely preserve the set of PPT states, in the sense
that ΓB1B0

2
½id ⊗ ΛðσA1B1A2B2

Þ� ≥ 0 for any state σ with
ΓB1B2

ðσA1B1A2B2
Þ ≥ 0. We can then define the zero-error

PPT entanglement cost of any bipartite state ρ ¼ ρAB as

Eexact
c;PPTðρÞ≔ inf

�
R∶ for all sufficiently largen∈N

∃Λn∈PPT∩CPTP∶ΛnðΦ⊗bRnc
2 Þ¼ρ⊗n

�
: ðA1Þ

Here, Φ2≔ jΦ2ihΦ2j, where jΦ2i ≔ ð1= ffiffiffi
2

p Þðj00i þ j11iÞ
is the two-qubit maximally entangled state, i.e., the
“ebit,” and Λn is required to be a PPT channel.

Appendix B: The quantifier Eκ—Wang and Wilde
[27,28,47] introduced and studied the SDP-computable
quantity

EκðρÞ ≔ log2 min fTrS∶ − S ≤ ρΓ ≤ S; SΓ ≥ 0g: ðB1Þ

Among other things, they showed that (i) Eκ is
monotonically nonincreasing under PPT channels;
(ii) EκðρÞ ≥ ENðρÞ for all states ρ, with equality when ρ
has zero binegativity; (iii) Eκ is subadditive, meaning that

Eκðρ ⊗ ρ0Þ ≤ EκðρÞ þ Eκðρ0Þ ðB2Þ

for all pairs of states ρ ¼ ρAB and ρ0 ¼ ρ0A0B0 ; and (iv) its
regularization yields the zero-error PPT entanglement
cost, i.e.,

Eexact
c;PPTðρÞ ¼ E∞

κ ðρÞ ≔ lim
n→∞

1

n
Eκðρ⊗nÞ: ðB3Þ

As said, it was claimed in [27] that Eκ is additive,
meaning that equality holds in (B2). However, this claim
is incorrect (see also [47]). To disprove it, it is useful to
first note that additivity indeed holds when both ρ and ρ0
have zero binegativity, simply because in that case Eκ

coincides with the logarithmic negativity by property (ii),
and this latter measure is additive, as one sees
immediately by looking at its definition in terms of the
1-norm of the partially transposed state. Hence, our
search for a counterexample must start with the
construction of states with nonzero binegativity. That
such states do exist was reported already in [36,67] based
on numerical evidence. However, here we present a
simpler, analytical construction.

Appendix C: Punch card states—Let A ≥ 0 be a
positive semidefinite d × d matrix, and let Q be another
d × d symmetric matrix with only 0=1 entries and all 1’s
on the main diagonal (i.e., such that Qii ¼ 1 for all i).
The associated “punch card state” is the bipartite
quantum state on Cd ⊗ Cd defined by

πA;Q ≔
1

NA;Q

	X
i;j

Aijjiiihjjj þ
X
i≠j

QijjAijjjijihijj


; ðC1Þ

where NA;Q is chosen so that TrπA;Q ¼ 1. It can be
verified that

πΓA;Q≃
1

NA;Q

�	X
i

Aiijiiihiij


⊕⨁

i<j

	QijjAijj Aij

A�
ij QijjAijj


�
;

ðC2Þ

from which, using the identity






	QijjAijj Aij

A�
ij QijjAijj






 ¼
	 jAijj QijAij

QijA�
ij jAijj



; ðC3Þ
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valid because Qij ∈ f0; 1g, one derives that

jπΓA;QjΓ ¼ 1

NA;Q

	X
i;j

QijAijjiiihjjj þ
X
i≠j

jAijjjijihijj


:

ðC4Þ

Therefore, if A and Q are chosen such that Q∘A≱ 0,
where ∘ denotes the Hadamard (i.e., entry-wise) product
between matrices, πA;Q will have nonzero binegativity,
i.e., jπΓA;QjΓ≱0. It is easy to construct examples of A and
Q that meet the above criteria, the simplest one being

A0 ≔

0
B@

1 1 1

1 1 1

1 1 1

1
CA; Q0 ≔

0
B@

1 0 1

0 1 1

1 1 1

1
CA: ðC5Þ

Having constructed a state with nonzero binegativity, we
can wonder whether two copies of it already violate the
additivity of Eκ. And sure enough, they do.
Lemma 1—The punch card state π0 ≔ πA0;Q0

defined by
(C1) with the substitution (C5) satisfies

1.001 ≈ Eκðπ⊗2
0 Þ < 2Eκðπ0Þ ≈ 1.029: ðC6Þ

In particular, the subadditivity of Eκ and Lemma 1 imply
that Eexact

c;PPTðπ0Þ ≤ 1
2
Eκðπ⊗2

0 Þ < Eκðπ0Þ and therefore that
Eexact
c;PPTðπ0Þ ≠ Eκðπ0Þ, thus invalidating the main claim of

the works [27,28].

Appendix D: Two SDP hierarchies—Recall that in (5)
and (6) we introduced the χ hierarchy Eχ;pðρÞ ¼
log2 χpðρÞ with

χpðρÞ≔min
�
TrSp∶ −Si≤SΓ

i−1≤Si; i¼0;…;p; S−1¼ρ
�
;

ðD1Þ

which constitutes a generalization of the logarithmic
negativity. We now introduce another complementary
hierarchy of SDPs, the “κ hierarchy,” defined for q∈Nþ
(q ≥ 1) by

Eκ;qðρÞ ≔ log2κqðρÞ; ðD2Þ

with

κqðρÞ ≔ minfTrSq−1∶ − Si ≤ SΓi−1 ≤ Si; i ¼ 0;…; q − 1;

S−1 ¼ ρ; SΓq−1 ≥ 0g: ðD3Þ

Observe the resemblance to the definition of χp in (D1):
the only difference between the two optimizations is
the condition SΓp−1 ≥ 0; adding that to (D1) yields

immediately (D3) with q ↦ p, and indeed in that case
the optimal Sp would automatically be Sp ¼ SΓp−1.
Furthermore, Eκ;1 ¼ Eκ coincides with the quantity (B1)
introduced by Wang and Wilde, of which the κ
hierarchy thus constitutes a generalization.
In the SM [55] we explore the properties of the quantities

Eχ;p and Eκ;q, showing them to be legitimate entanglement
measures. In particular, the functions are all suitably
normalized, continuous, faithful on PPT states, and
strongly monotonic under PPT operations. The pivotal
property that distinguishes Eχ;p from Eκ;q is that, while
the quantities Eκ;q are only subadditive, the χ quantities are
fully additive under tensor products, meaning that regu-
larization can always be avoided.
Two key insights lead to the proof of our main results.

First, that the two hierarchies provide complementary
bounds on Eexact

c;PPT, the fundamental quantity we want to
estimate: namely, the χ hierarchy gives increasing lower
bounds on Eexact

c;PPT, while the κ hierarchy gives decreasing
upper bounds on it. In other words, on any fixed state ρ

Eχ;0≤Eχ;1≤…≤Eexact
c;PPT¼E∞

κ ≤…≤Eκ;2≤Eκ;1: ðD4Þ

In particular, Eχ;p is increasing in p, while Eκ;q is
decreasing in q. Equation (D4) immediately shows the
remarkable connection between two very different limits:
one in the number of copies n, which is needed to compute
E∞
κ [see Eq. (B3)], and one in the hierarchy levels p and q.
The second insight is that there is a connection between

the χ and κ hierarchies, as expressed by the following key
technical result, proven in the SM [55].
Proposition 1—For all states ρ ¼ ρAB on a system of

minimal local dimension d ≔ minfjAj; jBjg ≥ 2, and all
p∈Nþ,

κpðρÞ ≤
d
2
χpðρÞ −

	
d
2
− 1



χp−1ðρÞ: ðD5Þ

With Proposition 1 at hand, we can now see how it
implies our two main results, Theorems 1 (exact expression
for the cost) and 2 (time complexity of computing the cost).
Proof sketch of Theorem 1—Combining (D4) and (D5)

shows that

2E
exact
c;PPTðρÞ ≤ κpðρÞ ≤

d
2
χpðρÞ −

	
d
2
− 1



χp−1ðρÞ: ðD6Þ

The quantity that we are really interested in, however, is the
normalized difference between χpðρÞ and its claimed

limiting value 2E
exact
c;PPTðρÞ. To see what the above inequality

tells us in this respect, we can define the quantity
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εpðρÞ ≔ 1 −
χpðρÞ
2E

exact
c;PPTðρÞ

; ðD7Þ

by means of which (D6) can be cast as εpðρÞ ≤�
1 − 2

d

�
εp−1ðρÞ. Iterating the above relation gives

εpðρÞ ≤
	
1 −

2

d



p
ε0ðρÞ ≤

	
1 −

2

d



p
; ðD8Þ

which entails (7) after elementary algebraic manipulations.
Taking the limit p → ∞ in (7) proves also (8). ▪
Proof sketch of Theorem 2—It suffices to formalize the

qualitative argument provided below the statement of the
theorem. For d > 2, we first choose

pd ≔ ⌈ log2ð2d=εÞ
−log2ð1 − 2

dÞ⌉ ¼ Oðd logðd=εÞÞ; ðD9Þ

so that, with the notation in (D7), εpd
ðρÞ ≤ ðε=2dÞ. Using

lnð2Þja − bj ≤ j2a − 2bj, valid for a, b ≥ 0, we get

0 ≤ Eexact
c;PPTðρÞ − Eχ;pd

ðρÞ ≤ 2E
exact
c;PPTðρÞε
2d ln 2

≤
ε

2 ln 2
; ðD10Þ

where the last inequality is a consequence of the fact that
every state can be created via a quantum teleportation
protocol—and hence with PPT operations—from a max-
imally entangled state, which entails that Eexact

c;PPTðρÞ ≤
log2 d for all ρ. We then solve the SDP for χpd

ðρÞ up to
an additive error ðln 2 − 1=2Þε by running an optimized
SDP solver [77,78]. Doing so yields an approximation of
Eχ;pd

ðρÞ up to an additive error
�
1 − 1=ð2 ln 2Þ�ε. Adding

this up with the error in (D10) yields a total error of ε. The
time complexity in (10) can be calculated using known
theoretical bounds on the complexity of SDPs, e.g., those
found in [77]. ▪
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