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Although quantum channels underlie the dynamics of quantum states, maps which
are not physical channels — that is, not completely positive — can often be encountered
in settings such as entanglement detection, non-Markovian quantum dynamics, or error
mitigation. We introduce an operational approach to the quantitative study of the non-
physicality of linear maps based on different ways to approximate a given linear map
with quantum channels. Our first measure directly quantifies the cost of simulating
a given map using physically implementable quantum channels, shifting the difficulty
in simulating unphysical dynamics onto the task of simulating linear combinations of
quantum states. Our second measure benchmarks the quantitative advantages that
a non-completely-positive map can provide in discrimination-based quantum games.
Notably, we show that for any trace-preserving map, the quantities both reduce to a
fundamental distance measure: the diamond norm, thus endowing this norm with new
operational meanings in the characterisation of linear maps. We discuss applications
of our results to structural physical approximations of positive maps, quantification of
non-Markovianity, and bounding the cost of error mitigation.

1 Introduction
It is one of the fundamental properties of quantum mechanics that the evolution of quantum states
is described by linear maps which are completely positive and trace preserving (CPTP), stemming
from the unitary dynamics enforced on a larger Hilbert space [1]. However, in several different
settings of practical importance, various applications of quantum dynamics which are not CPTP
can be encountered. This motivates the study of such transformations, and in particular a precise
understanding of how they can be compared with and approximated by physical quantum channels.

One important application of non-CPTP maps is in entanglement detection, where positive but
not completely positive maps can serve as entanglement witnesses [2]. A bipartite state ρ is entan-
gled if and only if there exists a positive map Φ such that id⊗Φ(ρ) is no longer a positive operator,
and therefore such a map can reveal the correlations of ρ. This approach has constituted one of the
most important ways of detecting entanglement [3, 4], but its experimental implementation encoun-
ters an obstacle: how to realise the action of an unphysical linear map in practice? This question
prompted the introduction of structural physical approximations (SPA) of non-CPTP maps [5],
which aim to enable the physical evaluation of general maps by designing suitable approximations
in terms of quantum channels and using them to infer properties of the original map [6–8].

Another setting in which non-CPTP maps are encountered is that of non-Markovian quantum
dynamics or, generally, in the reduced dynamics of correlated systems. Specifically, when an
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open quantum system shares some initial correlations with its environment, the evolution of the
composite system-environment state can correspond to a non-CPTP map when looking only at the
dynamics of the reduced state of the system [9–12]. Although the physical interpretation of this is
a matter of debate and alternative ways to understand such dynamics have been proposed [13–15],
it can nevertheless be useful to study such non-CPTP evolutions directly to gain an understanding
of reduced dynamics of open quantum systems.

Even broader types of unphysical quantum dynamics can be found in the areas of quantum
error correction and error mitigation [16–18]. This is because, in a broad sense, both of these
settings are concerned with the following problem: if an unknown system has undergone a noisy
evolution as ρ 7→ Θ(ρ), how can we reconstruct the original state as closely as possible, that is,
how to implement a map Φ such that Φ ◦Θ(ρ) ≈ ρ? Such inverse operations typically cease to be
valid quantum channels, and so it becomes necessary to devise approaches to implement them in
practice with the use of physical operations.

In this work, we introduce a general quantitative framework for the characterisation of such
unphysical maps by approximating them with quantum channels. We then explicitly give the
considered measures operational meaning by connecting them with the performance of practical
tasks, including the cost of simulating a given map with quantum channels. Notably, we show
that all of the considered measures reduce to the same quantity when the given linear map is trace
preserving: they all equal the diamond norm [19, 20], a fundamental computational tool that serves
as a measure of quantum channel distance and finds many uses in the practical characterisation
of quantum processes [21]. This endows the diamond norm with new meanings in the operational
tasks that we consider, and furthermore allows a number of new connections to be established. On
the one hand, many known results in the quantification of the diamond norm can be carried over
to the setting of our work, and on the other hand, we can use our characterisation to provide new
insight into the computation and applications of the diamond norm.

Our approach is based on the notion of robustness measures [22] — inspired by recent applica-
tions of such quantities in the study of general resource theories of channels [23–33], we use them to
quantify the amount of noise needed to turn a given map into a quantum channel. Such measures
allow for several different generalisations to the setting of linear maps, motivating us to study
and compare these definitions. The robustness-based approaches can be understood as different
ways of designing optimal decompositions of linear maps in terms of quantum channels, and so
they generalise the standard structural physical approximations [5]. We express the measures as
semidefinite programs and establish various relations and bounds between them.

We apply our first measure in the task of simulating the action of an unphysical map with
valid channels, accomplished by allowing the use of ancillary systems which can consists of linear
combinations of quantum states. Such an approach allows us to reduce the problem of simulating
the dynamics of quantum systems to the much simpler case of simulating the use of a non-positive
Hermitian operator. Assessing the difficulty of this procedure then reduces to quantifying how
much the given operator deviates from being a valid quantum state, and — employing the trace
norm as a natural quantifier of such ‘non-quantumness’ — we show that the optimal cost of
simulating a non-CPTP map in this way is given exactly by the value of the robustness measure.

Furthermore, answering the question of whether any unphysical map can provide measurable
operational advantages over quantum channels, we show this to be the case in the setting of
discrimination-based quantum games, establishing our second robustness measure as the exact
quantifier of this advantage.

Our results also generalise and shed light on the very recent findings of Ref. [33], which con-
sidered a similar framework for approximating trace-preserving maps using a robustness- and
quasiprobability-based approach. In particular, we show that the measure considered in [33] is
actually an alternative expression for the diamond norm of a map, rather than a new quantity.

The paper is structured as follows. In Sec. 2, we introduce the notions of robustness measures
and show how they can be applied to non-CPTP linear maps. We establish precise connections
with the diamond norm in Sec. 3. We then proceed to show that the robustness measures —
and hence the diamond norm — play a crucial role in quantifying the cost of simulating linear
maps (Sec. 4) as well as in understanding the advantages a non-CPTP map could provide in input-
output quantum games (Sec. 5). We proceed to establish a number of bounds for the measures in
Sec. 6. Finally, we discuss the applications of our approach, comparisons with other methods, and
explicitly show how the measures can be evaluated for some representative examples in Sec. 7.
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2 Robustness of non-CP maps
Let A and B denote two finite-dimensional quantum systems of dimension dA and dB , respectively.
We will use L(A) to denote the set of all linear operators, H(A) to denote the set of all Hermitian
operators, and D(A) to denote all density operators acting on the Hilbert space of system A. We
use 〈X,Y 〉 = Tr(X†Y ) for the Hilbert-Schmidt inner product.

Among all linear maps from L(A) to L(B), we will be primarily concerned with Hermiticity-
preserving maps H(A,B), which are defined as maps such that Φ(X) ∈ H(B) ∀X ∈ H(A). A
map is called positive if Φ(X) ≥ 0 ∀X ≥ 0 (w.r.t. the positive semidefinite cone), completely
positive (CP) if idA ⊗ Φ is positive, trace preserving if Tr Φ(X) = TrX ∀X, and trace non-
increasing if Tr Φ(X) ≤ TrX ∀X. To each map Φ ∈ H(A,B) we will associate the Choi operator
JΦ = (idA ⊗ Φ)[|Ω〉〈Ω|] ∈ H(A ⊗ B) where |Ω〉 =

∑
i |ii〉. Importantly, a map is Hermiticity-

preserving iff JΦ = J†Φ, CP iff JΦ ≥ 0, and trace preserving iff TrB JΦ = 1A (see e.g. [21]). Let
CPTNI(A,B) denote the set of completely positive and trace–non-increasing maps in H(A,B), and
analogously CPTP(A,B) the set of completely positive and trace-preserving maps. For simplicity
of notation, we will often simply write CPTP for CPTP(A,B) (and analogously for other sets)
when the spaces in consideration are not relevant.

In order to quantify how much a given map deviates from the set of CPTP maps, we will employ
the concept of robustness measures [22]. It will be insightful to first review how such measures
are defined for quantum states. Given a convex set of interest F ⊆ D, commonly chosen to be
the set of free states in a given resource theory, one asks: how much noise from a set N ⊆ D has
to be added to a state ρ in order to make it a free state? This has the intuitive interpretation of
measuring how robust the resources contained in the state ρ are with respect to noise from the set
N . Specifically, we write

rN (ρ) := min
{
λ

∣∣∣∣ ρ+ λω

1 + λ
=: σ ∈ F , ω ∈ N

}
. (1)

The most common choices of the noise set N are: N = D, in which case we obtain the so-called
generalised robustness equivalently given by

rD(ρ) = min
{
λ
∣∣∣ ρ ≤ (1 + λ)σ, σ ∈ F

}
, (2)

and the choice N = F , which corresponds to the standard robustness rF . The latter quantity is
directly related to the so-called base norm ‖ρ‖F of the set F , which can be alternatively understood
as an optimisation of quasiprobability distributions over the set F :

2rF (ρ) + 1 = ‖ρ‖F
:= min

{
λ+ + λ−

∣∣∣ ρ+ λ−σ− = λ+σ+, σ± ∈ F
}

= min
{∑

i

|λi|

∣∣∣∣∣ ρ =
∑
i

λiσi, σi ∈ F

} (3)

where the third line is a simple consequence of the convexity of F . The definitions straightforwardly
extend to unnormalised operators X: defining

rN (X) := min
{
λ

∣∣∣∣ X + λω

TrX + λ
=: σ ∈ F , ω ∈ N

}
, (4)

it is important to notice that the trace of X will come into play, and the base norm will equal
‖X‖F = 2rF (X) + TrX.

The case of interest to us will be where the set of free states F contains all physical quantum
states, F = D, in which case the different notions of the robustness are equal and one has

2rD(X) + TrX = ‖X‖ 1 , (5)

that is, the base norm is precisely the trace norm (Schatten 1-norm) ‖·‖ 1.
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Robustness of linear maps. A generalisation of these concepts to the case of linear maps can
be done in several different ways. Firstly, one has to note that it does not suffice to consider trace-
preserving maps in the definitions of this measures. This follows since any linear combination of
CPTP maps necessarily satisfies that TrB JΦ ∝ 1, which means that Tr Φ(ρ) takes the same value
for any input state ρ. Therefore, any Hermiticity-preserving map whose reduced Choi matrix is
not proportional to the identity operator cannot be represented as λ+Λ+ − λ−Λ− for CPTP Λ±.
To circumvent this, we will employ the set of completely positive and trace–non-increasing maps,
which can be understood as probabilistic implementations of quantum channels. Importantly,
robustness-based definitions which were all equal in the case of states might not be equal any more.
We therefore need to explicitly consider three different types of the robustness w.r.t. the sets CPTP
or CPTNI:

R(Φ) := min
{
λ

∣∣∣∣ Φ + λΛ
1 + λ

∈ CPTNI, Λ ∈ CPTNI
}
, (6)

R′(Φ) := min
{
λ | JΦ ≤ (1 + λ)JΛ, Λ ∈ CPTNI

}
(7)

= min
{
λ | JΦ ≤ (1 + λ)JΛ, Λ ∈ CPTP

}
,

R′′(Φ) := min
{
λ
∣∣∣ Φ + λΛ ∈ CP, Λ ∈ CPTNI

}
(8)

= min
{
λ
∣∣∣ Φ + λΛ ∈ CP, Λ ∈ CPTP

}
,

as well as a generalised notion of a base norm with respect to the set of completely positive and
trace–non-increasing maps:

‖Φ‖� := min
{
λ+ + λ−

∣∣∣ Φ = λ+Λ+ − λ−Λ−, Λ± ∈ CPTNI
}
. (9)

In the expressions for R′ and R′′, we made use of the fact that one can, without loss of generality,
restrict the optimisation to CPTP maps; this follows since for any Λ ∈ CPTNI such that TrB JΛ ≤
1A we can define the map Λ′ by JΛ′ = JΛ + C

dB
⊗ 1B where C = 1A − TrB JΛ ≥ 0 which satisfies

Λ′ ∈ CPTP and achieves the same value of the objective function. We note that closely related
definitions were recently also considered in Ref. [33] for the case of trace-preserving maps.

All of the quantities above are well-defined and take a finite value for any map Φ ∈ H(A,B), as
we shall see explicitly by establishing general upper bounds in Sec. 6. The robustness R(Φ) can be
seen to be an upper bound for all other quantities: any feasible decomposition of Φ in Eq. (6) gives
feasible solutions for Eq. (7), (8), and for the base norm in Eq. (9). It is a priori unclear whether
one can find general conditions under which the inequalities between the different measures are
tight. We shall shortly see that equality indeed holds for all trace-preserving linear maps.

All of the introduced quantities can be computed as semidefinite programs, which follows since
the constraints for a map to be CPTNI (or CPTP) are linear matrix inequalities. This means that
the measures can be evaluated efficiently (in the dimensions of the map) using numerical software.
The equivalent dual forms of the problems, which can also provide some insight into the differences
between the different definitions of the robustness measures, will be reported shortly in Sec. 6.

3 Relation with the diamond norm
For any Hermiticity-preserving map Φ, the diamond norm (completely bounded trace norm) is
defined as [19, 21]

‖Φ‖♦ = max
ρ∈D(A⊗A)

‖idA ⊗ Φ (ρ)‖ 1 , (10)

where, in a slight abuse of notation, we use D(A ⊗ A) to denote the states acting on a bipartite
Hilbert space composed of the space A and another space isomorphic thereto.

The diamond norm finds use as a fundamental measure of distance between quantum chan-
nels, mirroring the operational role of the trace distance in measuring distances between quantum
states [19, 21, 34, 35]. It is one of the most widely employed figures of merit in comparing quantum
channels and benchmarking channel manipulation protocols. Its quantification and characterisa-
tion is therefore crucial to an effective understanding of the properties of quantum processes. Close
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connections between the diamond norm and the base norm in the space of quantum channels can
be inferred already from the operational similarity that the diamond norm bears to the trace norm,
the latter being the natural base norm in the space of quantum states. Here we aim to clarify
the details of such connections and to explicitly relate the diamond norm with the robustness
measures.

We will first introduce the following lemma, which establishes a useful formulation of the
diamond norm for Hermiticity-preserving maps. The result is closely related to a more general
approach for generalised quantum channels considered previously by Jenčová [36], and can be
alternatively deduced from Lem. 4 and Thm. 2 of [36].

Lemma 1. For any Hermiticity-preserving map Φ, it holds that

‖Φ‖♦ = min
{
µ
∣∣∣ JΦ = M+ −M−, M± ≥ 0, TrB(M+ +M−) ≤ µ1A

}
(11)

= min
{
µ
∣∣∣ JΦ = M+ −M−, M± ≥ 0, TrB(M+ +M−) = µ1A

}
. (12)

Proof. Let ‖Φ‖′♦ denote the quantity in (12). We first notice that the constraint TrB(M+ +M−) =
µ1A can be relaxed to TrB(M+ + M−) ≤ µ1A without loss of generality. This follows since for
any feasible M± s.t. TrB(M+ + M−) + C = µ1 with C ≥ 0, one can define feasible solutions
M ′± = M± + C

2dB ⊗ 1B which satisfy TrB(M ′+ +M ′−) = µ1A and thus achieve the same optimal
value. We thus have

‖Φ‖′♦ = min
{
µ
∣∣∣ JΦ = M+ −M−, M± ≥ 0, TrB(M+ +M−) ≤ µ1A

}
= min

{
‖TrB(M+ +M−)‖∞

∣∣∣ JΦ = M+ −M−, M± ≥ 0
}
.

(13)

Taking the Lagrange dual of the above (see Appendix A) gives

‖Φ‖′♦ = max
{
〈JΦ,W 〉

∣∣∣ − ρ⊗ 1B ≤W ≤ ρ⊗ 1B , ρ ∈ D(A)
}

= sup
{
〈JΦ,W 〉

∣∣∣ − ρ⊗ 1B ≤W ≤ ρ⊗ 1B , ρ ∈ D>0(A)
}

= sup
{〈

W,
√
ρ⊗ 1B JΦ

√
ρ⊗ 1B

〉 ∣∣∣ ρ ∈ D>0(A), −1A⊗B ≤W ≤ 1A⊗B

}
= sup
ρ∈D>0(A)

∥∥∥√ρ⊗ 1B JΦ
√
ρ⊗ 1B

∥∥∥
1

= max
ρ∈D(A)

∥∥∥√ρ⊗ 1B JΦ
√
ρ⊗ 1B

∥∥∥
1
,

(14)

where in the second line, by continuity, we restricted our attention to the set of full-rank states
D>0(A) without loss of generality, and in the third line we made the change of variables W 7→√
ρ−1 ⊗ 1BW

√
ρ−1 ⊗ 1B . The fact that this equals the diamond norm of Φ can be deduced from

the results of Ref. [37] already; for completeness, we will show this explicitly. Recalling that
JΦ = (idA ⊗ Φ) |Ω〉〈Ω| with |Ω〉 being the unnormalised maximally entangled state, and using the
fact that Φ is only acting on one of the subsystems, we can write

‖Φ‖′♦ = max
ρ∈D(A)

∥∥∥√ρ⊗ 1B (idA ⊗ Φ) [|Ω〉〈Ω|]
√
ρ⊗ 1B

∥∥∥
1

= max
ρ∈D(A)

‖(idA ⊗ Φ) [√ρ⊗ 1A |Ω〉〈Ω|
√
ρ⊗ 1A]‖ 1

= max
ψ∈D(A⊗A)

‖idA ⊗ Φ (ψ)‖ 1

= max
ρ∈D(A⊗A)

‖idA ⊗ Φ (ρ)‖ 1

= ‖Φ‖♦

(15)

where we used that any pure state ψ ∈ D(A⊗A) can be written as
(√
ρ⊗ 1A

)
|Ω〉〈Ω|

(√
ρ⊗ 1A

)
for a suitable choice of ρ ∈ D(A), with |ψ〉 constituting the canonical purification of ρ.
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Compared with the semidefinite programs for the diamond norm of general linear maps orig-
inally derived in Refs. [37, 38], the form of the diamond norm presented in Lemma 1 already
constitutes a major simplification — both at a conceptual level, allowing for a restatement of the
problem in terms of optimising over decompositions of the form JΦ = M+ −M−, and computa-
tionally, as the number of optimisation variables is reduced.

As an immediate consequence of the above result, we can use the characterisation of the diamond
norm in Eq. (11) to construct valid feasible solutions for the base norm and robustness measures
in Eqs. (6)–(9), and vice versa.

Corollary 2. For any Hermiticity-preserving map Φ, it holds that

2 ‖Φ‖♦ ≥ ‖Φ‖� ≥ ‖Φ‖♦ ,

‖Φ‖♦ + 1 ≥ R′(Φ) ≥ 1
2

(
‖Φ‖♦ − 2 + λmin(TrB JΦ)

)
‖Φ‖♦ ≥ R

′′(Φ) ≥ 1
2

(
‖Φ‖♦ − λmax(TrB JΦ)

)
,

(16)

where λmin and λmax denote, respectively, the smallest and the largest eigenvalues.

Proof. Any decomposition for the diamond norm of the form JΦ = M+−M− with TrB(M++M−) ≤
µ1A satisfies TrBM± ≤ µ1A, which provides valid feasible solutions to the norm ‖·‖� and the
robustness measures. On the other hand, any decomposition for ‖·‖� of the form Φ = λ+Λ+−λ−Λ−
with Λ± ∈ CPTNI gives a feasible decomposition for the diamond norm with TrB(λ+JΛ++λ−JΛ−) ≤
(λ+ + λ−)1A. Similarly, any decomposition for R′ satisfying JΦ ≤ (1 + λ)JΛ gives a feasible
decomposition for ‖·‖♦ of the form JΦ = (1 + λ)JΛ−M− where M− := (1 + λ)JΛ− JΦ. Using that

TrB [(1 + λ)JΛ +M−] = TrB [2(1 + λ)JΛ − JΦ]
≤ [2(1 + λ)− λmin(TrB JΦ)]1A,

(17)

we get the stated bound. The case of R′′ follows analogously.

Equality between the different quantities can be shown for all trace-preserving maps, directly
relating the diamond norm with our considered measures.

Theorem 3. For any map Φ ∈ H(A,B) which is trace preserving or, more generally,
proportional to a trace-preserving map in the sense that TrB JΦ ∝ 1, it holds that

‖Φ‖♦ = ‖Φ‖� = min
{
µ+ + µ−

∣∣∣ JΦ = µ+JΛ+ − µ−JΛ− , Λ± ∈ CPTP, µ± ∈ R+

}
. (18)

For trace-preserving maps Φ, it additionally holds that

R(Φ) = R′(Φ) = R′′(Φ) =
‖Φ‖� − 1

2 =
‖Φ‖♦ − 1

2 . (19)

Proof. From the fact that TrB JΦ = t1A for some t ∈ R, it is easy to see that every decomposition
of the form JΦ = M+ −M−, M± ≥ 0, TrB(M+ +M−) = µ1A as in Lemma 1 has to satisfy

TrBM+ = µ+ t

2 1A, TrBM− = µ− t
2 1A. (20)

This implies that we can equivalently write

‖Φ‖♦ = min
{
µ+ + µ−

∣∣∣ JΦ = µ+M+ − µ−M−, M± ≥ 0, TrBM+ = TrBM− = 1A

}
(21)

which is precisely Eq. (18). Notice then that any such decomposition gives a valid feasible solution
for ‖Φ‖�, together with Cor. 2 yielding equality between the two norms.
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When Φ is trace preserving (t = 1), we can write

‖Φ‖♦ = min
{
µ+ + µ−

∣∣∣ JΦ = µ+JΛ+ − µ−JΛ− , Λ± ∈ CPTP
}

= min
{

2µ+ − 1
∣∣∣ JΦ = µ+JΛ+ − µ−JΛ− , Λ± ∈ CPTP

}
= min

{
2µ− + 1

∣∣∣ JΦ = µ+JΛ+ − µ−JΛ− , Λ± ∈ CPTP
}
.

(22)

The equality ‖Φ‖♦ = 2R′(Φ) + 1 = 2R′′(Φ) + 1 then follows: on the one hand, any decomposition of
the form in Eq. (22) gives a feasible decomposition for R′ and R′′ in Eqs. (7)–(8), and on the other
hand, any decomposition for the robustness measures is necessarily of the form in Eq. (22). Equality
with the robustness R(Φ) follows by noting again that any feasible decomposition in Eq. (22) gives
a feasible decomposition for R(Φ), and on the other hand using the relation R(Φ) ≥ R′(Φ) which
holds by definition.

Remark. The expression in Eq. (18) is valid also in the case of trace-annihilating maps (TrB JΦ = 0),
and thus the case of computing the distance ‖Λ− Λ′‖♦ between two quantum channels. A simplified
expression for this problem appeared previously in [37] and was explicitly expressed as a robustness-
type measure in [26].

We note that the quantity ‖·‖�, applied to trace-preserving maps, was recently considered in
Refs. [33] and [39]. It was not noticed in these works that this is simply the diamond norm, and
hence many results shown in [33] (e.g. the multiplicativity with respect to tensor product, unitary
invariance, bounds with trace norm ‖JΦ‖ 1, monotonicity under the action of superchannels, and
some explicit expressions) follow directly from known properties of the diamond norm [20, 37, 40,
41].

We will later see that this equivalence does not extend to maps which are not trace preserving
(or proportional thereto), and indeed we can have ‖Φ‖� = 2 ‖Φ‖♦ in the extreme case.

4 Quantifying simulation cost
Since the quantum dynamics which can be realised in practice are restricted to completely positive
maps, a relevant question then becomes: how can one simulate the action of a non-CPTP map on
a quantum state when only CPTP maps are available to us?

A similar question was recently asked in Ref. [33], where the authors applied quasiprobability
sampling methods [17, 30, 42] to the desired operation Φ. We take a different approach here and
instead allow for the use of an ancillary system X, which can be an affine combination of quantum
states, in order to simulate the action of the map Φ as a CPTP map Λ acting jointly on the input
quantum state and the ancilla X. The “non-physicality” of the given map Φ is then pushed into
the system X, allowing for the overall transformation Λ to be a valid quantum channel.

The motivation for this approach is that the task of simulating the action of the non-CPTP
map Φ is effectively replaced with the simulation of a unit-trace Hermitian operator X, which
could be significantly easier to realise in practice, especially since we will see that the dimension
of the ancilla can be taken to be arbitrarily small. Standard quasiprobability-based approaches
such as the ones employed in [17, 30, 33] aim to estimate the expectation value Tr[Φ(ρ)A], where
Φ is a non-CPTP map and A an observable, by decomposing the given map as Φ = λiΛi with
λi ∈ R and Λi ∈ CPTP (or CPTNI). The expectation value Tr[Φ(ρ)A] is then estimated by
evaluating Tr[Λi(ρ)A] and appropriately sampling from the output distributions with probabilities
determined by the coefficients λi [17, 42]. In practice, this means that we have to repeatedly
realise each operation Λi, which requires the implementation of a different quantum circuit for
each operation. Consider, on the other hand, a situation in which the dynamics is fixed as some
map Λ ∈ CPTNI, and we only need to vary the input states. This can be achieved by writing
Φ(·) = Λ(· ⊗X), where we can write any Hermitian operator in a quasiprobability representation
as X =

∑
i µiρi. The task of sampling from the output distribution is then reduced to feeding in

the different states ρi into the circuit which realises the fixed operation Λ, thus greatly simplifying
the implementation.

As mentioned in Sec. 2, a natural quantifier of how much a given operator X ∈ H(A) with
Tr(X) = 1 deviates from the set of all quantum states is the trace norm ‖X‖ 1. Indeed, this
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quantity can be given an explicit interpretation in terms of the optimal cost of a quasiprobability-
based estimation of the expectation value of X [42]. We then define the simulation cost of a map
as the minimal amount of such “non-physicality” of X needed to simulate the action of the map:

S(Φ) := min
{
‖X‖ 1

∣∣∣ Λ(· ⊗X) = Φ(·), Tr(X) = 1, Λ ∈ CPTNI
}
. (23)

We then have the following.

Theorem 4. For any map Φ ∈ H(A,B), it holds that

S(Φ) = 2R(Φ) + 1. (24)

In the case of a trace-preserving Φ, we have in particular that

S(Φ) = ‖Φ‖♦ (25)

and an optimal Λ for the simulation can be chosen to satisfy Λ ∈ CPTP.

Proof. Let Λ± ∈ CPTNI(A,B) be maps that achieve an optimal decomposition for Φ such that
Φ = (1+R(Φ))Λ+−R(Φ)Λ−. Now, consider a non-positive Hermitian operatorX = µ+ω+−µ−ω− ∈
H(A′) where ω± are orthogonal quantum states and Tr[X] = µ+ − µ− = 1. We do not impose any
additional conditions on the size of the ancillary system A′, meaning that its Hilbert space can be
chosen to be an arbitrary space of dimension at least 2. Defining the projector onto the positive part
of X as P+, we then consider the map defined by the action on a basis |i1〉〈j1|⊗ |i2〉〈j2| ∈ L(A⊗A′)
as follows:

Λ(|i1〉〈j1| ⊗ |i2〉〈j2|) := Tr
[
P+

µ+
|i2〉〈j2|

]
Φ(|i1〉〈j1|) + Tr

[(
1− P+

µ+

)
|i2〉〈j2|

]
Λ−(|i1〉〈j1|)

= (1 +R(Φ)) Tr
[
P+

µ+
|i2〉〈j2|

]
Λ+(|i1〉〈j1|)

+ Tr
[(

1− (1 +R(Φ))P+

µ+

)
|i2〉〈j2|

]
Λ−(|i1〉〈j1|)

(26)

It is easy to check that Λ(ρ⊗X) = Φ(ρ). Now, we will show that as long as the condition

(1 +R(Φ)) Tr
[
P+

µ+
ρ

]
≤ 1 ∀ρ (27)

is satisfied, then Λ is also CPTNI. This can be seen by observing first that (27) gives

0 ≤ P̃ := (1 +R(Φ))P+

µ+
≤ 1, (28)

which implies that P̃ is a valid POVM element. Note that we can rewrite (26) as

Λ = Λ+ ⊗ TP̃ + Λ− ⊗ T1−P̃ (29)
= (1⊗ TP̃ )(Λ+ ⊗ 1) + (1⊗ T

1−P̃ )(Λ− ⊗ 1) (30)

where TP (·) := Tr [P ·]. Since Λ+, Λ−, and TP̃ , T1−P̃ are all completely positive, Λ is also completely
positive. Since (27) is always satisfied when

µ+ ≥ 1 +R(Φ), (31)

an operator X with ‖X‖ 1 = µ+ + µ− = 1 + 2R(Φ) achieves the desired implementation.
The converse part can be proven by extending an argument in Ref. [23] to our setting. Suppose

a non-quantum resource X = µ+ω+ − µ−ω− and CPTNI map Λ realise the simulation of Φ, i.e.
Φ(·) = Λ (· ⊗X). Also, define Λ+(·) := Λ(· ⊗ ω+). Then, by linearity of Λ, we get

Λ+(·) = 1
µ+

Λ(· ⊗X) + 1
µ+

Λ(· ⊗ µ−ω−) (32)

= 1
µ+

Φ(·) + µ−
µ+

Λ(· ⊗ ω−). (33)
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Since Λ+ and Λ− := Λ(· ⊗ ω−) are CPTNI maps, this is a valid linear decomposition of Φ into two
CPTNI maps, providing an upper bound for its robustness as R(Φ) ≤ µ− = µ+ − 1. This gives the
desired lower bound for the simulation cost as µ+ + µ− ≥ 1 + 2R(Φ).

An interesting quantitative equivalence emerges between our approach and the method of
Ref. [33]. In that work, the authors showed that the minimal overhead required to employ
quasiprobability-based simulation techniques [17, 42] to estimate Tr[Φ(ρ)A] for a trace-preserving
map Φ scales with the norm ‖Φ‖� (see also the discussion in Sec. 7.2). Since we know from Thm. 3
that

2R(Φ) + 1 = ‖Φ‖� = ‖Φ‖♦ (34)

holds for any trace-preserving map, the quantitative cost of the simulation scheme is actually the
same as our method, despite the seemingly different approaches employed. In fact, our Thm. 4
shows that it is sufficient to consider decompositions of Φ as

Φ(·) = µ+Λ(· ⊗ ω+)− µ−Λ(· ⊗ ω−) (35)

where Λ and X = µ+ω+ − µ−ω− are as constructed in our protocol. This means that, despite
the significant practical simplification obtained by fixing the dynamics of the simulator as Λ and
optimising over the quasiprobability representations of X instead, our simulation method does not
sacrifice any performance, and the optimal sampling overhead cost of the more direct approach of
[33] cannot be any better.

We note that Theorem 4 gives a general way of reducing the task of simulating the action
of a linear map Φ to simulating an affine combination of states in the form of the operator X.
This could provide methods for the simulation of dynamics even beyond quasiprobability-based
approaches like the one discussed above, although the specifics of this will depend on the given
simulation method.

State injection and resource simulation. The setting considered here is closely related to
state injection methods which generalise quantum teleportation [43] and find use e.g. in the resource
theories of entanglement [44–48], stabiliser-state quantum computation [49, 50], and coherence [23,
51]. In such tasks, a resourceful state φ (such as a maximally entangled singlet) is used to simulate
the action of an arbitrary quantum channel Θ as Θ(·) = Γ(· ⊗ φ), where now Γ is a free operation
(such as a protocol consisting of local operations and classical communication only). In this sense,
our result can be thought of as the cost of channel simulation in the resource theory of “non-
physicality” beyond quantum mechanics, with the operator X acting as a resource. There are
many potential ways to interpret such a result: for instance, unit-trace Hermitian operators which
are not necessarily positive semidefinite have found use as so-called pseudo-states in [52], where
they were used to study correlations beyond quantum mechanics, and as so-called pseudo-density
matrices in [53], where they were used to put spatial and temporal correlations on equal footing.
Being able to use a Hermitian systemX could then be interpreted as having access to such extended
sets of correlations. We leave a precise investigation of the connections between the operational
setting employed here and resource theories of correlations for future work.

Amortised simulation. A related setting that we can consider is that of amortised simulation
[23, 54], in which the non-quantum resource X is not consumed completely, but instead we can
recover some of it in the form of another resource Y which can be reused. Precisely, we define

SA(Φ) = min
{
‖X‖ 1
‖Y ‖ 1

∣∣∣∣ Λ(· ⊗X) = Φ(·)⊗ Y, Tr(X) = Tr(Y ) = 1, Λ ∈ CPTNI
}
. (36)

Clearly, SA(Φ) ≤ S(Φ) as we can just take X to be optimal for S and Y to be the trivial system
1. One could expect amortisation to lead to a strictly smaller cost of simulating a given map.
However, we can show that this is not the case — amortisation cannot improve the simulation cost
of any trace-preserving map.
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Corollary 5. For any trace-preserving map Φ ∈ H(A,B), it holds that

SA(Φ) = S(Φ) = ‖Φ‖♦ . (37)

Proof. Let Λ be the optimal map such that Λ(· ⊗ X) = Φ(·) ⊗ Y with SA(Φ) = ‖X‖ 1 / ‖Y ‖ 1.
Noting that this can be alternatively understood as a simulation protocol for the trace-preserving
map Φ(·)⊗ Y , Thm. 4 tells us that any such protocol satisfies

‖X‖ 1 ≥ S (Φ(·)⊗ Y )
= ‖Φ(·)⊗ Y ‖♦
= ‖Φ‖♦ ‖Y ‖ 1

= S(Φ) ‖Y ‖ 1

(38)

where we used the multiplicativity of the diamond norm and the fact that ‖Y ‖♦ = ‖Y ‖ 1 where we
treat Y as a preparation channel with a trivial input space. From this we have that SA(Φ) ≥ S(Φ),
which concludes the proof.

5 Quantifying advantages in quantum games
The study of general linear maps in a resource-theoretic setting motivates the question: is there a
well-defined operational task in which having access to any non-CPTP map could provide practical
advantages over all quantum channels?

In order to give an instance of such a task, we consider the setting of input-output games,
inspired by the work of Ref. [55] and studied in the context of dynamical quantum resources
in [27, 28]. The setting is as follows: Alice prepares a state chosen randomly from the ensemble
{pi, σi}i and sends the state through the map Φ ∈ H(A,B) to Bob, who then measures with a
POVM {Mj}j . The players are then awarded a score based on a reward function characterised by
the coefficients {wij}i,j ∈ R, and their goal is to maximise the average payoff given by

P (Φ, {pi, σi}, {Mj}, {wij}) =
∑
i,j

wijpi 〈Mj ,Φ(σi)〉 (39)

by a suitable choice of the states and measurements. The tuple G = ({pi, σi}, {Mj}, {wij}) then
defines the input-output game G.

We stress that, although the payoff P (Φ,G) might lose its physical meaning as a discrimination
task when Φ is an arbitrary linear map, already for a positive trace-preserving map Φ we have
that every output Φ(σi) is indeed a valid density matrix and thus the measurement at the output
constitutes a well-defined state discrimination task.

We are then interested in quantifying the best possible advantage that a given map Φ could
provide over CPTP maps. Such an optimisation is unbounded without any further constraints, so
we will consider games for which any completely positive map Γ achieves a non-negative payoff
value — this can always be ensured by suitably shifting the payoff function for a given game. We
then have the following.

Theorem 6. For any map Φ ∈ H(A,B), it holds that

sup
G

P (Φ,G)
maxΛ∈CPTP P (Λ,G) = R′(Φ) + 1 (40)

where the maximisation is over all input-output games G such that P (Γ,G) ≥ 0 ∀Γ ∈ CP.
In the case of a trace-preserving Φ, we have in particular that

sup
G

P (Φ,G)
maxΛ∈CPTP P (Λ,G) =

‖Φ‖♦ + 1
2 , (41)

and it suffices to optimise over games such that P (Λ,G) ≥ 0 ∀Λ ∈ CPTP.
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Proof. Any Φ can be written as Φ = (1 + R′(Φ))Λ− Γ where Λ ∈ CPTP, Γ ∈ CP. On the one
hand, we then have for any G that

P (Φ,G) = (1 +R′(Φ))P (Λ,G)− P (Γ,G)
≤ (1 +R′(Φ))P (Λ,G)
≤ (1 +R′(Φ)) max

Λ∈CPTP
P (Λ,G)

(42)

where the first inequality follows since P (Γ,G) ≥ 0 ∀Γ ∈ CP, which shows that the left-hand side of
Eq. (40) is upper-bounded by the right-hand side. By Thm. 3, in the case of a trace preserving
map Φ we can equivalently write Φ = (1 +R′(Φ))Λ+ −R′(Φ)Λ− where Λ± ∈ CPTP, so one only
needs to consider games such that P (Λ,G) ≥ 0 ∀Λ ∈ CPTP.

On the other hand, by strong Lagrange duality (see App. A) we can write

R′(Φ) + 1 = max
{
〈W,JΦ〉

∣∣∣ 0 ≤W ≤ ρ⊗ 1B , ρ ∈ D(A)
}
. (43)

We can then make the following observations. Firstly, since the set of separable states in D(A⊗B)
has a non-empty interior [56], any Hermitian operator X can be written as X =

∑n
i=1 xi σi ⊗ ηi

for some σi ∈ D(A), ηi ∈ D(B), xi ∈ R, and n ∈ N. Then, choose the optimal W in Eq. (43) and
write WTA =

∑n
i=1 xi σi ⊗ ηi, where TA denotes the partial transpose. Defining the set {Mi}n+1

i=1

by Mi := ηi/
∥∥∥∑j ηj

∥∥∥
∞

for i ≤ n and Mn+1 = 1−
∑n
i=1Mi, we have that

W =
∑
i

piwi σ
T
i ⊗Mi (44)

where pi = 1/n for i ≤ n and pn+1 = 0, and the coefficients wi are defined by wi = xin
∥∥∥∑j ηj

∥∥∥
∞
.

By the Choi-Jamiołkowski isomorphism and the linearity of Φ, we then have for Φ that

〈W,JΦ〉 =
∑
i

piwi 〈Mi,Φ(σi)〉 = P (Φ,G′) (45)

with G′ defined by the above choices of {pi, σi}, {Mi}, and {wi}. Noticing thatW ≥ 0⇒ P (Γ,G′) ≥
0 ∀Γ ∈ CP, this finally gives

sup
G

P (Φ,G)
maxΛ∈CPTP P (Λ,G) ≥

P (Φ,G′)
maxΛ∈CPTP P (Λ,G′)

≥ R′(Φ) + 1
maxΛ∈CPTPR′(Λ) + 1

= R′(Φ) + 1

(46)

where the second inequality follows since P (Φ,G′) = 〈W,JΦ〉 = R′(Φ) + 1 holds by assumption
while P (Λ,G′) = 〈W,JΛ〉 ≤ R′(Λ) + 1 holds for any map Λ by definition, and the last equality
follows since R′(Λ) = 0 for any Λ ∈ CPTP.

6 General bounds
Useful bounds for the measures can be obtained by relating them with norms or quantities com-
puted at the level of the Choi operator JΦ, avoiding an optimisation over all CPTNI or CPTP
maps. For instance, the following relation with the trace norm generalises known bounds for the
diamond norm [41, 57] (see also [33]).

Proposition 7. For any Hermiticity-preserving map Φ ∈ H(A,B), decompose JΦ into its
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positive and negative parts as JΦ = JΦ+ − JΦ− with JΦ± ≥ 0. Then

‖JΦ‖ 1 ≥ ‖Φ‖� ≥
1
dA
‖JΦ‖ 1 ,

max
{

Tr JΦ+ − 1, Tr JΦ−
}
≥ R(Φ) ≥ max

{
1
dA

Tr JΦ+ − 1, 1
dA

Tr JΦ−

}
,

Tr JΦ+ − 1 ≥ R′(Φ) ≥ 1
dA

Tr JΦ+ − 1,

Tr JΦ− ≥ R′′(Φ) ≥ 1
dA

Tr JΦ−.

(47)

Proof. Consider ‖·‖� first. Using the expression

‖JΦ‖ 1 = min
{
µ+ + µ−

∣∣∣ JΦ = µ+ω+ − µ−ω−, ω± ∈ D(A⊗B)
}

(48)

we see that any such decomposition provides a feasible solution for ‖Φ‖�, since ω± constitute
valid Choi operators of maps Ω± ∈ CPTNI(A,B). The first inequality thus follows. The second
inequality is a consequence of the bound ‖Φ‖� ≥ ‖Φ‖♦ from Cor. 2 and the fact that 1

dA
‖JΦ‖ 1

is known to lower bound the diamond norm (see e.g. [41, 57]). It can also be explicitly seen by
noting that any decomposition of the form JΦ = λ+JΛ+ − λ−JΛ− with Λ± ∈ CPTNI can provide a
decomposition for the trace norm by rescaling each JΛ± by its trace; specifically,

‖JΦ‖ 1 ≤ λ+ Tr JΛ+ + λ−Tr JΛ− , (49)

and using the fact that Tr JΛ± ≤ dA
∥∥JΛ±

∥∥
∞ ≤ dA gives the desired bound.

The case of the robustness measures R′, R′′ follows analogously, where we now use the fact that
TrX+ = min

{
µ
∣∣∣ X ≤ µρ, ρ ∈ D

}
and TrX− = min

{
µ
∣∣∣ X + µρ ≥ 0, ρ ∈ D

}
for any Hermitian

X. For the robustness R, take λ to be the greater of Tr JΦ+ − 1 and Tr JΦ− , and write

JΦ + λ
JΦ−
λ

= (1 + λ) JΦ+
1 + λ

. (50)

Since each JΦ±
λ ∈ CPTNI, this provides a valid feasible solution for R. On the other hand,

R(Φ) ≥ max{R′(Φ), R′′(Φ)} by definition, from which the lower bound follows.

Both the upper and the lower bounds in Prop. 7 can be tight, as was shown already for the
diamond norm [40]. However, better upper bounds can be obtained as follows.

Proposition 8. For any Hermiticity-preserving map Φ ∈ H(A,B), it holds that

‖Φ‖♦ ≤ λmax(TrB [JΦ+ + JΦ−]),
‖Φ‖� ≤ λmax(TrB JΦ+) + λmax(TrB JΦ−),
R(Φ) ≤ max

{
λmax(TrB JΦ+)− 1, λmax(TrB JΦ−)

}
,

R′(Φ) ≤ λmax(TrB JΦ+)− 1,
R′′(Φ) ≤ λmax(TrB JΦ−).

(51)

We note that the bound for the diamond norm, which we stated above for completeness, ap-
peared previously in [41].

Proof. The bounds for ‖·‖♦, ‖·‖�, R′ and R′′ follow simply by using JΦ = JΦ+ − JΦ− as feasible
solutions in the definitions.

For the robustness R, take λ to be the greater of λmax(TrB JΦ+)− 1 and λmax(TrB JΦ−), and
write

JΦ + λ
JΦ−
λ

= (1 + λ) JΦ+
1 + λ

. (52)

Since this is a feasible solution for R, we get R(Φ) ≤ λ.
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As for lower bounds, we will first need to establish dual expressions for the considered measures.
The following Proposition is an application of standard convex duality arguments, and we include
details in Appendix A for completeness.

Proposition 9. For any Φ ∈ H(A,B), the following dual expressions hold.

‖Φ‖♦ = max
{
〈JΦ,W 〉

∣∣∣ − ρ⊗ 1B ≤W ≤ ρ⊗ 1B , ρ ∈ D(A)
}

‖Φ‖� = max
{
〈JΦ,W 〉

∣∣∣ − ρ⊗ 1B ≤W ≤ σ ⊗ 1B , ρ, σ ∈ D(A)
}

R(Φ) = max
{
〈JΦ,W 〉 − TrY

∣∣∣ −X ⊗ 1B ≤W ≤ Y ⊗ 1B , X, Y ≥ 0, Tr(X + Y ) = 1
}

R′(Φ) = max
{
〈JΦ,W 〉 − 1

∣∣∣ 0 ≤W ≤ ρ⊗ 1B , ρ ∈ D(A)
}

R′′(Φ) = max
{
〈JΦ,W − ρ⊗ 1B〉

∣∣∣ 0 ≤W ≤ ρ⊗ 1B , ρ ∈ D(A)
}

= max
{
〈JΦ,W 〉 − Tr Φ(ρ)

∣∣∣ 0 ≤W ≤ ρ⊗ 1B , ρ ∈ D(A)
}
.

(53)

We can then obtain lower bounds by employing the dual optimisation problems. The bound for
the diamond norm is well known [20], but we find it is insightful to rederive it using this approach1.

Proposition 10. For any Φ ∈ H(A,B) and any input state ρ ∈ D(A), let Φ(ρ)± denote
the positive/negative part of the output operator Φ(ρ). Then

‖Φ‖� ≥ ‖Φ‖♦ ≥ max
{
‖Φ(ρ)‖ 1

∣∣∣ ρ ∈ D(A)
}

≥ ‖TrB JΦ‖∞
‖Φ‖� ≥ max

{
Tr Φ(ρ)− + Tr Φ(σ)+

∣∣∣ ρ, σ ∈ D(A)
}

≥ λmax[(TrB JΦ)+] + λmax[(TrB JΦ)−]

R(Φ) ≥ max
{

Tr Φ(X)− + Tr Φ(Y )+ − TrY
∣∣∣ X,Y ≥ 0, Tr(X + Y ) = 1

}
≥ max

{
λmax[(TrB JΦ)+]− 1, λmax[(TrB JΦ)−]

}
R′(Φ) ≥ max

{
Tr Φ(ρ)+ − 1

∣∣∣ ρ ∈ D(A)
}

≥ λmax[(TrB JΦ)+]− 1

R′′(Φ) ≥ max
{

Tr Φ(ρ)−
∣∣∣ ρ ∈ D(A)

}
≥ λmax[(TrB JΦ)−].

(54)

Proof. Consider the diamond norm first. The main idea is to restrict the optimisation in the dual
expression of ‖·‖♦ in (53) to operators of the form W = ρ⊗ Z for some operator Z. Then we have

‖Φ‖♦ ≥ max
{
〈JΦ, ρ⊗ Z〉

∣∣∣ − 1B ≤ Z ≤ 1B , ρ ∈ D(A)
}

= max
{〈

Φ(ρT ), Z
〉 ∣∣∣ − 1B ≤ Z ≤ 1B , ρ ∈ D(A)

}
= max

{∥∥Φ(ρT )
∥∥

1

∣∣∣ ρ ∈ D(A)
}
,

(55)

where the second line follows by the Choi-Jamiołkowski isomorphism. Taking Z ∈ {1,−1}, we get

1We remark the curious fact that, despite the apparent similarity, the bound for the diamond norm in Prop. 10 is
not the induced Schatten norm ‖·‖ 1→1, as the latter requires an optimisation over non-Hermitian input operators
even when the map Φ is Hermiticity-preserving [20].
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the lower bound
‖Φ‖♦ ≥ max

{
±〈TrB JΦ, ρ〉

∣∣∣ ρ ∈ D(A)
}

= ‖TrB JΦ‖∞ .
(56)

In the case of ‖·‖�, we use feasible solutions of the form W = ρ⊗ Z + σ ⊗ V with −1 ≤ Z ≤ 0
and 0 ≤ V ≤ 1 to obtain the stated bound analogously — the crucial observation being that
max

{
〈A,B〉

∣∣∣ 0 ≤ B ≤ 1

}
= TrA+ for any Hermitian A. The other measures follow in the same

way.

Note the similarity between the eigenvalue-based lower bounds of Prop. 10 and the upper
bounds of Prop. 8: the upper bounds consider the eigenvalues after decomposing JΦ as JΦ+−JΦ−,
while the lower bounds use the positive and negative parts of TrB JΦ.

An immediate consequence is that for any completely positive map Φ, it holds that

‖Φ‖� = ‖Φ‖♦ = ‖TrB JΦ‖∞ (57)

since the operators JΦ and TrB JΦ are both positive semidefinite. However, the lower bounds allow
us to show explicitly that the equality ‖Φ‖� = ‖Φ‖♦ is no longer true for maps which are neither
CP nor trace preserving, and in fact the extreme disparity of ‖Φ‖� = 2 ‖Φ‖♦ (cf. Cor. 2) can be
achieved. Consider for instance the case when

Φ(·) = 〈0| · |0〉 |0〉〈0| − 〈1| · |1〉 |1〉〈1| . (58)

Decomposing JΦ = |0〉〈0| ⊗ |0〉〈0| − |1〉〈1| ⊗ |1〉〈1| into its positive and negative parts, the bound
of Prop. 8 gives ‖Φ‖♦ ≤ 1. However, the best upper bound we get for ‖Φ‖� is 2, and it is indeed
tight: we have Φ(|0〉〈0|) = |0〉〈0| and Φ(|1〉〈1|) = − |1〉〈1|, and so Prop. 10 gives ‖Φ‖� ≥ 2. A
similar argument can be used to show that R(Φ) = 1, which in particular implies that 2R(Φ) + 1 >
‖Φ‖� > ‖Φ‖♦.

All of the bounds that we established in this section can be tight, as we shall demonstrate in
what follows.

7 Applications and examples
7.1 Positive maps and structural physical approximation
Positive maps constitute a fundamental way to detect and characterise quantum entanglement [2–4].
One of the most studied approaches to implementing such maps in practice is the structural physical
approximation (SPA) [5, 6], which aims to approximate a given positive map Φ with a physical
quantum channel by considering decompositions of the form Φ + ςD, where D is the completely
depolarising channel, JD = 1/dB . Such approximations have found use in both understanding the
properties of positive maps [7, 58], as well as in realising them in experiments [6, 8, 59].

Intuitively, the robustness measures can then be understood as different approaches to defining
an optimised SPA to the map Φ, by allowing channels other than the depolarising map to be used
in the decomposition (cf. [33]). We will now discuss the similarities and differences between the
approaches by studying two representative examples of positive maps.

Transposition map. Consider first the transposition map T ∈ H(A,A). Letting SPA(T ) denote
the minimal amount ς needed for (T +ςD)/(1+ς) to be a quantum channel, it can be easily verified
that SPA(T ) = dA. However, by making a more suitable choice of a channel in the optimisation, our
robustness measures construct an approximation as (T +λΛ)/(1 +λ) where λ = 1

2 (dA− 1) already
suffices to ensure that this is a valid physical channel. From this we see that R(T ) = 1

2 (dA − 1)
and hence ‖T‖� = dA. Quantitatively, the advantage gained by allowing arbitrary channels in such
decompositions can therefore be significant.

To understand why a better approximation can be obtained, let us take a closer look at the
optimal decomposition for this map. Our generalised approach can take into consideration the fact
that the Choi operator of the transposition map, JT (the swap operator), already has a non-trivial
positive part, which means that there is no need to act on that part of the space. More specifically,
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a better approximation is obtained simply by defining the map JΛ = 1− JT
dA − 1 ∈ CPTP and mixing

as
JT + 1

2(dA − 1)JΛ ≥ 0 ⇒ 2
dA + 1 T + dA − 1

dA + 1 Λ ∈ CPTP. (59)

Structurally, this is not too different from the SPA — the only maps involved in the combination
are the depolarising channel and the transposition map itself, even if the optimal approximation is
not simply a convex mixture of the two. Indeed, we could define an optimised structural physical
approximation which allows for such decompositions to be used:

SPA′(Φ) := min
{
ς ′
∣∣∣∣ JΦ + ς ′

[
λmax(JΦ)1− JΦ

λmax(JΦ)dB − 1

]
≥ 0

}
=− λmin(JΦ) dBλmax(JΦ)− 1

λmax(JΦ)− λmin(JΦ) ,
(60)

with the expression valid for any map such that λmin(JΦ) < λmax(JΦ) 6= d−1
B . This can be used to

give a general bound to the robustness measures.

Proposition 11. For any trace-preserving map Φ ∈ H(A,B) such that Φ 6= D, it holds
that

R(Φ) ≤ SPA′(Φ) ≤ SPA(Φ). (61)

In the case of the transpose, it holds that SPA′(T ) = R(T ) = 1
2 (dA − 1), so we know that

an optimal approximation of the transposition map can be realised with only the depolarising
channel, as long as one considers the optimised approach of Eq. (60). However, this is not the case
for general maps, and the advantages offered by the generalised robustness approach can provide
new insight into optimal approximations of maps, as we shall see in the following.

Choi map. The Choi map C ∈ H(A,A) with dA = 3 is an example of an indecomposable positive
map, and is defined by [60]

C(X) :=

X11 +X22 −X12 −X13
−X21 X22 +X33 −X23
−X31 −X32 X33 +X11

 (62)

where Xij denote the matrix elements of X in a chosen basis. A numerical evaluation shows that
the optimal decompositions for C give SPA(C) = 3

2 and SPA′(C) = 2
3 . With the robustness, an

improved choice can be obtained by choosing Λ = id and mixing as JC+ 1
6Jid ≥ 0, yielding R(C) = 1

6 .
Consequently, mixing with more general maps can not only provide quantitative improvements, but
also identify ways of implementing non-CPTP maps which are impossible to find with the standard
structural physical approximations.

An interesting difference between the SPA- and robustness-based approaches is that the optimal
SPA of the Choi map is a measure-and-prepare (entanglement-breaking) channel [7], while the map
obtained in the robustness-based approach is not (as can be verified with the PPT criterion). Since
measure-and-prepare channels enjoy an easy implementation in practical settings, it would be an
interesting extension of our approach to consider the extent of a quantitative advantage that can
be maintained while requiring that the optimal CPTP approximation be entanglement breaking.

We also note that another approach to realising positive maps was studied in Ref. [61] by using
multiple copies of the input state, where a related SPA-based approximation was also considered.
An extension of the methods of our work to this framework could provide additional insight into
the implementability of positive maps.

7.2 Inverse quantum channels
A fundamentally important case of a non-CPTP map encountered in many settings is the inverse
linear map of a bijective quantum channel, that is, a map such that Λ−1 ◦Λ = Λ◦Λ−1 = id.2 Note

2We note that in many cases it suffices to consider only left or right inverses, but we assume two-sided invertibility
for simplicity.
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that such an inverse is not guaranteed to exist for a general channel, and even when it does, it will
not form a valid quantum channel unless Λ is a unitary map. However, many important cases of
quantum dynamics are indeed invertible, allowing us to study their inverses in the formalism of
our work.

Non-Markovianity. One setting in which channel inverses play a role is the study of non-
Markovianity. Among the different ways to define Markovian evolution, a common way is to say
that a time-dependent evolution governed by the channel Λt,0 is Markovian if it behaves as a
physical map over any time interval [t, t+ δt]. Mathematically, any Λt,0 satisfying this condition is
said to be CP-divisible [62–64], which can be formalised by the statement that for all times t and
s ≤ t we can write

Λt,0 = Ξt,s ◦ Λs,0
where the propagator Ξt,s is a CPTP map. For more general channels, the decomposition Λt,0 =
Ξt,s ◦Λs,0 results in some Ξt,s that is non-CPTP, indicating that Markovian dynamics break down
after some time point s.

Observe that, provided Λt,0 is invertible for all t, we can take Ξt,s = Λt,0 ◦Λ−1
s,0. Therefore, the

non-physicality of Λt,0 ◦ Λ−1
s,0 serves as an indicator of non-Markovianity, and — since this map

is trace preserving for any trace-preserving Λ — the diamond norm
∥∥Λt,0 ◦ Λ−1

s,0
∥∥
♦

can be used
as a quantitative measure of non-Markovianity over the time-interval [t, s]. This is similar to the
original approach of Ref. [62] where a quantifier based on the trace norm of the Choi operator was
employed — the advantage of our definition is the ability to interpret this quantity operationally.

Specifically, we observe that quantum mechanics is ultimately a Markovian theory: if we had
knowledge of all relevant objects, then all quantum dynamics could be described by Markovian
unitary dynamics. That is, any information from the past that is relevant to the future must pass
through the present, and hence the optimal prediction of future observational statistics ultimately
depends only on the the present state of reality. Non-Markovianity is an artefact of not tracking all
relevant information in the present. In our context, this arises as our mathematical characterisation
of the candidate channel, Λs,0, does not track the state of the environment. The operational
relevance of

∥∥Λt,0 ◦ Λ−1
s,0
∥∥
♦
then becomes more evident. Notably, in Sec. 4 we presented a systematic

means of simulating any unphysical map Ξt,s by introducing an ancillary system X. Here, we may
think of this as building a Markovian model for Ξt,s by introducing X =

∑
i µiρi as an “artificial

environment”. The feeding in of different states ρi depending on X then represents a means
in which non-Markovian behaviour on the system is realised. While this construction does not
immediately look physical (as it allows affine mixtures of quantum states), it can be simulated by
a classical computer with sufficient resource overhead. The resource costs of doing so — ‖Ξt,s‖♦ —
thus represents a bound on the information processing capabilities of the environment that enable
said non-Markovian behaviour to emerge.

There are multiple approaches for extending this to a time-independent measure of non-Markovianity
of Λ. One could, for example, take the supremum of the measure

∥∥Λt,0 ◦ Λ−1
s,0
∥∥
♦
over all t and s.

This would then characterise how much extra information processing we need beyond tracking the
state of the system at time s to simulate dynamics over the time-interval [s, t]. We may also follow

an approach based on Ref. [62] and define I♦(Λ) :=
∫ ∞

0
g♦,t(Λ) dt, where g♦,t can be understood

as the right-hand derivative of the diamond norm of the dynamics at time t:

g♦,t(Λ) := lim
ε→0+

∥∥Λt+ε,0 ◦ Λ−1
t,0
∥∥
♦
−
∥∥Λt,0 ◦ Λ−1

t,0
∥∥
♦

ε
= lim
ε→0+

∥∥Λt+ε,0 ◦ Λ−1
t,0
∥∥
♦
− 1

ε
. (63)

I♦(Λ) therefore represents the total amount of non-Markovianity in this evolution. A suitable
normalisation of this quantity can allow for the comparison of the strength of non-Markovianity in
different settings [62, 64]. We leave a careful consideration of these possibilities to future work.

Error mitigation. Another application for the study of channel inverses is error mitigation.
This setting considers the scenario where one is tasked with computing expectation values of
the type Tr[U(ρ)A] for an input state ρ, ideal gate U , and observable A, while operations are
followed by a noise channel Θ. A leading approach to this problem, called probabilistic error
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cancellation [17, 65], is to counteract the noise with the inverse map Θ−1, so that Tr[U(ρ)A] =
Tr[Θ◦Θ−1◦U(ρ)A]. By decomposing Θ−1 into a quasiprobability distribution over a convex subset
of channels P = {Λi} such that Λi ◦ U would be implementable on a (fictitious) noiseless device,
standard quasiprobability sampling arguments allows us to construct an unbiased estimator for
Tr[U(ρ)A] using only operations implementable on a noisy device. The optimal overhead cost of
such a procedure scales as γP(Θ)2, where [17, 30]

γP(Θ) = min
{∑

i

|λi|

∣∣∣∣∣ Θ−1 =
∑
i

λiΛi, Λi ∈ P
}

= min
{
λ+ + λ−

∣∣∣ Θ−1 = λ+Λ+ − λ−Λ−, Λ± ∈ P
}
.

(64)

The specific choice of P can be made depending on not only the physical setting in consideration,
but also on one’s precise motivations. On the one hand, a set with a finite number of operations
(e.g., Clifford gates) turns Eq. (64) into a linear program [17, 65], making the overhead cost easily
computable while sacrificing the expressibility of devices. On the other hand, choosing a larger set
with an infinite number of implementable operations takes into account a larger expressibility [30],
but makes the computation of Eq. (64) hard in general. Here, to accommodate computability and
expressibility at the same time, we take another approach considered in Ref. [33, 66]: we choose
P to be all physical quantum channels. We notice that the norm ‖·‖� provides the cost of error
mitigation in this setting as γCPTP(Θ) =

∥∥Θ−1
∥∥
�

=
∥∥Θ−1

∥∥
♦
, which can be efficiently computed by

semidefinite programming. Although this choice of P might seem too permissive, the lower bound
obtained through this approach can actually match known achievability results (upper bounds) [33],
showing new optimality results and even improving on the specialised characterisation of Ref. [30]
in some cases. Of note is the fact that, since any inverse map Θ−1 of a quantum channel Θ is
trace preserving, our Thm. 3 shows a new application of the diamond norm in bounding the cost
of error mitigation: it always holds that γP(Θ) ≥

∥∥Θ−1
∥∥
♦
, regardless of the choice of P.

In some cases — such as when experiencing the leakage or loss of some qubits during com-
putation — the noisy evolution can actually correspond to a map which is not trace preserving.
Although many previous approaches did not take this into consideration, our methods explicitly ex-
tend to such maps, allowing one to understand the simulation of non-trace-preserving linear maps
through Thm. 4. Related settings which our methods can characterise include the so-called linear
quantum error correction [67], which aims to correct errors of systems undergoing general, non-
CPTP dynamics Θ, as well as error mitigation for non-Markovian noise [68], where the mitigation
cost can be related to a measure of non-Markovianity. In such cases, our approach can thus help
understand the implementation of not only the inverse maps, but also the dynamics themselves.

7.2.1 Computing the measures

To showcase the application of our methods and evaluate the measures for some representative
examples, we will consider the inverse maps of several fundamental types of noisy quantum evolu-
tions: depolarising, amplitude damping, dephasing, and qubit leakage channels. The expressions
for the first two appeared in Ref. [33], which we rederive using the methods and results of this
work. We also find for the first three that the optimal decomposition into Λ± for the norm ‖Θ−1‖�
(Eq. (9)), can be taken as convex mixtures of unitaries and state preparations. Thus, ‖Θ−1‖� also
serves as the optimal cost γP(Θ−1) with a smaller set P as considered in Ref. [30], indicating that
the capability to implement all CPTNI maps does not provide any advantage over that of imple-
menting unitaries and state preparations only. Note that the inverses of trace-preserving maps are
trace preserving, and so in such cases the equality ‖Φ‖� = ‖Φ‖♦ = 2R(Φ) + 1 holds by Thm. 3,
which means that it will suffice to evaluate any one of the measures.

Depolarising noise. The depolarising channel, given by Dp(X) := (1−p)X+pTrX 1

dA
for some

noise parameter p ∈ [0, 1), has the inverse D−1
p (X) = 1

1−pX −
p

1−p TrX 1

dA
. This gives

JD−1
p

= 1
1− p |Ω〉〈Ω| −

p

(1− p)dA
1A⊗A. (65)

Accepted in Quantum 2021-07-30, click title to verify. Published under CC-BY 4.0. 17



Importantly, one can notice that TrB JD−1
p +

and TrB JD−1
p −

are proportional to identity. As first

noticed in [40, 41], this means that the lower bound 1
dA

∥∥∥JD−1
p

∥∥∥
1
of Prop. 7 matches the upper

bound λmax

(
TrB

[
JD−1

p +
+ JD−1

p −

])
of Prop. 83. We thus get

∥∥D−1
p

∥∥
�

=
∥∥D−1

p

∥∥
♦

= 1
dA

∥∥∥JD−1
p

∥∥∥
1

=
1 +

(
1− 2d−2

A

)
p

1− p . (66)

Dephasing noise. The generalised dephasing channel [69] is defined by ∆p(X) :=
∑dA−1
i=0 piZiXZ

†
i ,

where p = (p0, . . . , pdA−1) is a chosen set of noise parameters pi ≥ 0, and Zi refers to the qudit
clock operators

Zi =
dA−1∑
j=0

ωij |j〉〈j| (67)

in some basis {|i〉}, with ω being a primitive dAth root of unity. In the case of dA = 2, this recovers
the usual qubit dephasing channel ∆p(X) = (1 − p)X + pZXZ†. One can notice that the action
of this channel can be represented by ∆p(X) = X � S where � denotes the element-wise matrix
product (Schur/Hadamard product), and

(S)jk =
dA−1∑
i=0

piω
ij(ωik)∗ =

dA−1∑
i=0

piω
i(j−k) j, k = 0, . . . dA − 1 (68)

in the same basis {|i〉}. Provided that the coefficients of S are non-zero (that is, ∆p does not act
as a completely dephasing channel on any subspace), the map is invertible as ∆−1

p (X) = X � S
with S defined by

(S)jk = 1
(S)jk

j, k = 0, . . . dA − 1. (69)

We will now show that
∥∥∆−1

p
∥∥
�

=
∥∥∆−1

p
∥∥
♦

= 1
dA

∥∥∥J∆−1
p

∥∥∥
1

= 1
dA

∥∥S∥∥ 1.

The equality
∥∥∆−1

p
∥∥
�

=
∥∥∆−1

p
∥∥
♦
is a consequence of Thm. 3; note here that we do not actually

need to impose that ∆p be trace preserving (i.e., that
∑
i pi = 1), since both ∆p and ∆−1

p are
always proportional to a trace-preserving map by construction.

To show the equality
∥∥∆−1

p
∥∥
�

= 1
dA

∥∥S∥∥ 1, consider the decomposition of S as S = S+ − S−.
Crucially, since S is a circulant matrix, so is S, and hence it can be diagonalised by the Fourier
transform matrix (F )jk = 1√

dA
ωjk [70, 2.2.P10]. Each eigenvector of S is therefore of the form

|sm〉 = 1√
dA

dA−1∑
i=0

ωim |i〉 , (70)

ensuring in particular that all diagonal elements of each density matrix |sm〉〈sm| are equal. This
entails that S+ and S− both have constant diagonals. Define now the maps

Λ±(X) := X � S±. (71)

Since S± ≥ 0, each such map is completely positive [71, Thm. 3.7], and clearly Λ′± := Λ±dA/Tr(S±)
is trace preserving as we have just seen that (S±)ii = (S±)jj ∀i, j. Thus we have a decomposition
as

∆−1
p = TrS+

dA
Λ′+ −

TrS−
dA

Λ′−, Λ′± ∈ CPTP, (72)

from which we get the bound
∥∥∆−1

p
∥∥
�
≤ 1

dA

∥∥S∥∥ 1. On the other hand, let |ψ〉 = 1√
dA

∑dA−1
i=0 |i〉

and use Prop. 10 to get ∥∥∆−1
p
∥∥
�
≥
∥∥∆−1

p (|ψ〉〈ψ|)
∥∥

1 = 1
dA

∥∥S∥∥ 1 . (73)

3In fact, ‖Φ‖♦ = 1
dA
‖JΦ‖ 1 if and only if TrB

(
JΦ+ + JΦ−

)
∝ 1 [40, 41].
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Finally, the equality
∥∥∥J∆−1

p

∥∥∥
1

=
∥∥S∥∥ 1 is obtained by noticing that J∆−1

p
=
∑
i,j(S)ij |ii〉〈jj| which

has the same eigenvalues as S.
The eigenvalues of S can be readily obtained due to the fact that it is a circulant matrix [70,

2.2.P10], allowing for a straightforward computation of the trace norm
∥∥S∥∥ 1 and altogether giving

∥∥∆−1
p
∥∥
♦

= 1
dA

dA−1∑
m=0

∣∣∣∣∣∣
dA−1∑
j=0

(
dA−1∑
i=0

piω
j(i−m)

)−1∣∣∣∣∣∣ . (74)

For the qubit dephasing channel with p ∈ [0, 1
2 ), we recover

∥∥∆−1
p

∥∥
♦

= 1
2

∥∥∥∥( 1 1
1−2p

1
1−2p 1

)∥∥∥∥
1

= 1
1− 2p . (75)

Since each eigenvector |sm〉 for S in (70) corresponds to the application of Zm, Λ′± in (72) are
realised as probabilistic applications of the generalised phase unitaries.

Amplitude damping noise. The qubit amplitude damping channel Aγ(·) = A0 ·A†0 +A1 ·A†1
is defined by the Kraus operators A0 := |0〉〈0|+

√
1− γ |1〉〈1| and A1 := √γ |0〉〈1|. Using the fact

that
|1〉〈1| = 1

1− γAγ(|1〉〈1|)− γ

1− γ |0〉〈0|

= 1
1− γAγ(|1〉〈1|)− γ

1− γAγ(|0〉〈0|),
(76)

we have
A−1
γ (|1〉〈1|) = 1

1− γ |1〉〈1| −
γ

1− γ |0〉〈0| . (77)

Proposition 10 thus gives ∥∥A−1
γ

∥∥
�

=
∥∥A−1

γ

∥∥
♦
≥
∥∥A−1

γ (|1〉〈1|)
∥∥

1

= 1 + γ

1− γ .
(78)

A matching upper bound can be obtained by explicitly computing JA−1
γ

(see e.g. [17, 30]) and
using the upper bound in Prop. 8.

The above shows a rather general method of obtaining lower bounds for linear maps which are
inverses of other linear maps, without having to explicitly compute the full inverse map. Indeed, this
can be extended to maps which only approximately invert a given channel — useful, for instance,
when dealing with non-invertible maps, or when aiming to reduce the cost of implementing a given
map by only requiring that it approximately mitigates the error.

Proposition 12. Let Φ ∈ H(A,B) and Φ̃ ∈ H(B,A) be such that
∥∥Φ̃ ◦Φ(ρ)− ρ

∥∥
1 ≤ ε for

all ρ ∈ D(A). Then∥∥Φ̃
∥∥
♦
≥ max

{
‖Z‖ 1 (1− ε)

∣∣∣ Φ(Z) ∈ D(B)
}

∥∥Φ̃
∥∥
�
≥ max

{
TrZ− + TrQ+ − ε(‖Z‖ 1 + ‖Q‖ 1)

∣∣∣ Φ(Z),Φ(Q) ∈ D(B)
}

R(Φ̃) ≥ max
{

TrZ− + TrQ+ − Tr Φ(Q)− ε(‖Z‖ 1 + ‖Q‖ 1)
∣∣∣ Φ(Z),Φ(Q) ≥ 0,

Tr Φ(Z +Q) = 1
}

R′(Φ̃) ≥ max
{

TrZ+ − 1− ε ‖Z‖ 1

∣∣∣ Φ(Z) ∈ D(B)
}

R′′(Φ̃) ≥ max
{

TrZ− − ε ‖Z‖ 1

∣∣∣ Φ(Z) ∈ D(B)
}
.

(79)
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Proof. We use Prop. 10 to get that∥∥Φ̃
∥∥
♦
≥ max

{∥∥Φ̃(σ)
∥∥

1

∣∣∣ σ ∈ D(B) ∩ ran(Φ)
}

= max
{∥∥Φ̃ ◦ Φ(Z)

∥∥
1

∣∣∣ Φ(Z) ∈ D(B)
}

≥ max
{
‖Z‖ 1 −

∥∥Z − Φ̃ ◦ Φ(Z)
∥∥

1

∣∣∣ Φ(Z) ∈ D(B)
}

≥ max
{
‖Z‖ 1 (1− ε)

∣∣∣ Φ(Z) ∈ D(B)
}
.

(80)

The third line follows by the triangle inequality, and the last line is a consequence of the assumption
that

∥∥Φ̃ ◦ Φ(ρ) − ρ
∥∥

1 ≤ ε for all ρ ∈ D(A), since we can write any Z = µ+ρ+ − µ−ρ− for some
ρ± ∈ D(A) to get

∥∥∥Φ̃ ◦ Φ(Z)− Z
∥∥∥

1
≤ ε(µ+ + µ−) ≤ ε ‖Z‖ 1. The case of the other measures is

analogous: using the variational form of the function TrZ+ (and similarly TrZ−) we can obtain

Tr Φ̃(σ)+ = max
{〈

Φ̃ ◦ Φ(Z),W
〉 ∣∣∣ 0 ≤W ≤ 1

}
= max

{
〈Z,W 〉 −

〈
Z − Φ̃ ◦ Φ(Z),W

〉 ∣∣∣ 0 ≤W ≤ 1

}
≥ max

{
〈Z,W 〉 −

∥∥Z − Φ̃ ◦ Φ(Z)
∥∥

1 ‖W‖∞
∣∣∣ 0 ≤W ≤ 1

}
≥ TrZ+ − ε ‖Z‖ 1

(81)

where we used the Cauchy-Schwarz inequality. Using these bounds in Prop. 10 yields the stated
result.

Leakage error. Consider the qubit leakage error Lp(·) = Lp·L†p where Lp := |0〉〈0|+
√

1− p |1〉〈1|.
This represents a situation where the excited state is lost with probability 1−p, and this stochastic
nature is reflected to the fact that Lp is not trace preserving. The inverse of the leakage error is
given by L−1

p (·) = L−1
p · L−1

p . Since this is a completely positive map, Eq. (57) gives

∥∥L−1
p

∥∥
�

=
∥∥L−1

p

∥∥
♦

=
∥∥∥TrB JL−1

p

∥∥∥
∞

= 1
1− p . (82)

Note that the inverse can be realised as

L−1
p = 1

2

(
1 + 1√

1− p

)
id− 1

2

(
1√

1− p
− 1
)
Z + p

1− pΠ|1〉〈1| (83)

where Z(·) := Z ·Z with Z = |0〉〈0|− |1〉〈1| being the Pauli Z matrix, and Π|1〉〈1|(·) := |1〉〈1| · |1〉〈1|
being the projection onto the state |1〉.

8 Discussion
We introduced a comprehensive quantitative approach to the study of non-completely-positive lin-
ear maps, focusing in particular on the task of approximating and simulating them with valid
quantum channels. To this end, we considered several quantifiers which generalise measures em-
ployed in the study of quantum resources — namely, variants of the robustness and base norm
measures. We showed that they satisfy very close relations with the diamond norm, and in par-
ticular are exactly equal to it for any trace-preserving linear map. Since such trace-preserving
maps are the most commonly encountered examples of dynamics beyond physical quantum chan-
nels, this allowed us to establish fruitful interrelations between the quantities, and discover new
applications of the fundamentally important quantity that is the diamond norm. We developed
in particular two operational connections. Firstly, we introduced a method of simulating general
linear maps with quantum channels, shifting the difficulty of realising non-quantum dynamics onto
the structurally simpler task of implementing linear combinations of quantum states. We showed
that our robustness measure exactly quantifies the cost of realising such schemes in terms of the
required state-based resources. Secondly, we showed that another variant of the robustness finds
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use as an exact quantifier of the performance advantage that a general linear map can enable over
quantum channels in a class of state discrimination games. We introduced a number of useful
bounds and explicitly employed them to demonstrate the computability of the measures for some
representative examples. Finally, we showed how our measures can find use in the quantitative
characterisation of several practically relevant settings, namely, structural approximations of pos-
itive maps, non-Markovianity quantification, and tightly bounding the cost of probabilistic error
mitigation.

Although we focused on the application of our framework to Hermiticity-preserving maps, we
note that more general linear maps can be treated in a similar way. The simplest way to ap-
proach this is to decompose any linear map Φ into its Hermiticity-preserving and skew-Hermiticity-
preserving parts, that is, write Φ = ΦH + iΦSH where the constituent maps are defined through
JΦH := 1

2 (JΦ +J†Φ) and JΦSH := 1
2i (JΦ−J†Φ). The maps ΦH and ΦSH are then explicitly Hermiticity-

preserving, and our arguments can be applied to them directly. A similar approach was employed
in [72] to decompose the two-point quantum correlator T : L(A)→ L(A⊗A), defined as the map
satisfying Tr[T (ρ)(A⊗B)] = Tr[AρB] for all A,B. Indeed, one can show that the decompositions
constructed in [72] are also optimal for the robustness-based quantities.

We also note that the diamond norm has been applied as a measure of specific properties of
quantum channels, such as their ability to detect coherence [73]. Connections between our methods
and such approaches could be fruitful to explore.

A major outstanding issue is to understand how the framework of this work can be extended
to non-linear maps, which could allow for the characterisation and more efficient approximation of
important unphysical dynamics such as quantum cloners. This question was already asked in the
earliest works concerned with approximating non-CPTP maps with quantum channels [5], but it
still remains a considerable challenge to devise approaches which could apply to general non-linear
transformations.
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A Dual forms
Here we derive the dual expressions of the measures, as stated in Prop. 9. The derivation follows
standard arguments in convex optimisation [74, 75] (see also [24, App. B]). Let us explicitly consider
the case of the diamond norm. As our starting point, we will take the primal optimisation problem
as in Lem. 1:

‖Φ‖♦,p = min
{
µ
∣∣∣ JΦ = M+ −M−, M± ≥ 0, TrB(M+ +M−) ≤ µ1A

}
. (84)

The Lagrangian of this problem is given by

L(µ,M+,M−;W,P,Q,R) = µ− 〈M+ −M− − JΦ,W 〉 − 〈M+, P 〉 − 〈M−, Q〉
− 〈µ1A − TrB(M+ +M−), R〉

= µ(1− TrR) + 〈M+,−W − P +R⊗ 1B〉
+ 〈M−,W −Q+R⊗ 1B〉+ 〈JΦ,W 〉

(85)

where W,P,Q ∈ H(A ⊗ B), R ∈ H(A) are Lagrange multipliers, and we used that 〈S,TrB T 〉 =
〈S ⊗ 1B , T 〉 holds for any S ∈ H(A), T ∈ H(A⊗B). The dual problem is then defined as

‖Φ‖♦,d := sup
W∈H

P,Q,R≥0

inf
µ∈R

M+,M−∈H

L(µ,M+,M−;W,P,Q,R)

= sup
W∈H

P,Q,R≥0

{
〈JΦ,W 〉 if TrR = 1 and W + P = R⊗ 1B and W −Q = −R⊗ 1B
−∞ otherwise

= sup
{
〈JΦ,W 〉

∣∣∣ W ≥ −R⊗ 1, W ≤ R⊗ 1, R ≥ 0, TrR = 1
}
,

(86)

with the supremum achieved since the feasible set is compact. A strictly feasible solution, that is, a
feasible solution for which the inequality constraints are strict, can be constructed by decomposing
JΦ = JΦ+ − JΦ− and defining M± := JΦ± + ε1A⊗B with µ suitably large. By Slater’s theorem
(see e.g. [75]), the existence of a strictly feasible solution ensures that ‖Φ‖♦,p = ‖Φ‖♦,d.

The dual forms of the other measures are obtained in full analogy with the derivation above.
The crucial observation is that an optimisation of the form

‖Φ‖� = min
{
λ+ + λ−

∣∣∣ Φ = λ+Λ+ − λ−Λ−, Λ± ∈ CPTNI
}

(87)

can be rewritten as

‖Φ‖� = min
{
λ+ + λ−

∣∣∣ JΦ = M+ −M−, M± ≥ 0, TrBM± ≤ λ±1A
}

(88)

which allows us to follow the same approach.
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