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Fundamental limitations on distillation of quantum
channel resources
Bartosz Regula 1✉ & Ryuji Takagi 1,2✉

Quantum channels underlie the dynamics of quantum systems, but in many practical settings

it is the channels themselves that require processing. We establish universal limitations on

the processing of both quantum states and channels, expressed in the form of no-go theo-

rems and quantitative bounds for the manipulation of general quantum channel resources

under the most general transformation protocols. Focusing on the class of distillation tasks—

which can be understood either as the purification of noisy channels into unitary ones, or the

extraction of state-based resources from channels — we develop fundamental restrictions on

the error incurred in such transformations, and comprehensive lower bounds for the over-

head of any distillation protocol. In the asymptotic setting, our results yield broadly applicable

bounds for rates of distillation. We demonstrate our results through applications to fault-

tolerant quantum computation, where we obtain state-of-the-art lower bounds for the

overhead cost of magic state distillation, as well as to quantum communication, where we

recover a number of strong converse bounds for quantum channel capacity.
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One of the central aims of quantum information science is
to precisely understand the limitations governing the use
of quantum systems and develop the most efficient ways

to take advantage of the laws of quantum physics. At the heart of
such questions lies the study of quantum channels, which enable
the manipulation of quantum states. However, in order to most
effectively exploit quantum resources, it is important to be able to
manipulate quantum channels themselves1–3. Channel transfor-
mations form the basis of some of the most pressing problems in
quantum science, including for instance devising efficient
schemes for quantum communication and key distribution for
use in quantum networks4–7, or processing quantum circuits to
aid in the mitigation and correction of errors in computation8–10.

Among such tasks, a particularly important class of problems
known as channel distillation can be distinguished. Depending on
the resource in consideration, distillation can be understood
either as channel purification, i.e. the conversion of noisy channel
resources into pure (unitary) ones, or as the extraction of state-
based resources from quantum channels. The motivation for such
transformations comes from the fact that, just as in the case of
maximally entangled singlets in entanglement theory4,11, pure
resources can be necessary for the efficient utilisation of a given
resource. This is the case in quantum computation, where one
aims to synthesise unitary quantum gates which can be employed
in a quantum circuit9, or in quantum communication, where
transfer of quantum information can be understood as the dis-
tillation of noiseless channels7. However, the practical realisation
of such distillation protocols can incur large costs in terms of the
required resource overhead. Due to the importance of distillation
schemes in mitigating the effects of noise, the study of their
limitations is therefore vital in many fundamental quantum
information processing tasks. A major obstacle to understanding
the capabilities of channel manipulation protocols is that general
strategies for transforming channels can be highly complex, using
ancillary systems and the outputs from successive channel uses in
order to adaptively improve the transformations2, or even pro-
cessing channels in ways that do not enforce a definite causal
order12,13. Additionally, the limits of channel manipulation can
be understood in different ways: in settings such as quantum
computation, it is crucial to precisely understand and minimise
the error incurred in manipulating gates and circuits, while in the
study of quantum communication, it is often of interest to
characterise asymptotic transformations and bound their
achievable rates. We set to describe all such limitations in a
common framework.

In this work, we establish a comprehensive approach to
bounding the efficacy of manipulating the resources of quantum
channels under general free transformations. We introduce uni-
versal lower bounds on the error of channel distillation, estab-
lishing precise quantitative limitations on the achievable
performance of any distillation protocol. We reveal broad no-go
results in multi-copy channel transformations under the most
general manipulation protocols— adaptive schemes whose causal
order structure is not necessarily fixed — allowing us to establish
fundamental bounds on the overhead of any physical protocol for
channel distillation and simulation. We furthermore use our
results to provide strong converse bounds for asymptotic trans-
formations, establishing sharp thresholds on the achievable dis-
tillation rates and characterising the ultimate limits of channel
manipulation. All of our bounds rely on trade-off relations
between the transformation accuracy and two important resource
quantifiers: the resource robustness and resource weight. By
adopting such a general resource-theoretic approach, our meth-
ods are readily applicable in a wide variety of practical settings.
This allows us not only to unify, consolidate, and extend results
that have appeared in specialised settings, but also to develop

methods and bounds that have not previously found use in
characterising resource transformations.

Furthermore, since quantum states can be regarded as a special
case of quantum channels, our results apply also to state
manipulation tasks. Our framework significantly improves on
and extends the applicability of previous methods which char-
acterised state transformations, including a recent general
approach to no-go theorems and bounds for quantum state
purification introduced in ref. 14.

Our results can be applied in the characterisation of general
quantum resources, encompassing both intrinsic properties of
quantum channels as well as dynamical resources based on the
underlying properties of quantum states. We showcase this broad
applicability with two different applications to the most pertinent
settings: fault-tolerant quantum computation with magic states,
as well as quantum communication. First, we connect the tasks of
magic state distillation and gate synthesis through the underlying
resource theory of magic, and study the similarities and differ-
ences between the two tasks. We show that our results yield
substantially improved bounds in this setting, providing in par-
ticular state-of-the-art general lower bounds on the overhead of
magic state distillation. We then develop further the resource-
theoretic approach to quantum communication assisted by no-
signalling correlations, where we show how our bounds can be
used to understand both one-shot and asymptotic transforma-
tions as well as to recover the strong converse property of no-
signalling coding15,16. Adapting our methods to the study of
communication assisted by separable and positive partial trans-
pose (PPT) operations, we recover a number of leading single-
letter strong converse bounds on quantum capacity17–19, pro-
viding a simplification of proof methods employed in specialised
approaches. Furthermore, we formalise the trade-off relations
between the success probability and transformation accuracy in
probabilistic distillation protocols where post-selection is allowed.
Here, our results indicate a qualitative difference in achievable
accuracy between deterministic and probabilistic settings, and
suggest potential advantages of employing probabilistic distilla-
tion protocols.

Results
Setting. Quantum information processing can often be under-
stood as the interplay of various physical resources20,21. In order
to describe different quantum phenomena in a unified manner
and establish methods that can apply to a broad variety of phy-
sical settings, we will employ the formalism of quantum resource
theories21. The recent years have seen an active development of
general resource-theoretic approaches to state manipulation and
distillation problems, but the study of quantum channel manip-
ulation in this setting is still in its infancy3,22–25. In particular, not
much is known about constraining one-shot transformations of
channels beyond specific settings, and questions such as trans-
formation rates have previously only been addressed under spe-
cific assumptions on the structure of the involved resources and
protocols. Our approach will be to instead employ broad
resource-theoretic methods which avoid presupposing any par-
ticular properties of the considered setting.

A resource theory is a general framework concerned with the
manipulation of quantum states or channels under some physical
restrictions21. The restrictions determine which states or channels
are ‘free’, in that they carry no resource and can be regarded as
freely accessible under the physical constraints. The primary
object of study of our work will be channel resources, so we
assume that in the given physical setting, a particular subset of
quantum channels O has been singled out as the free channels. A
large number of very different settings and resources can be
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described with a suitable choice of O, motivating us to establish
methods that apply to any such choice. Therefore, to remain as
general as possible, we will only make two natural assumptions
about the set O: that it is closed, meaning that no resource can be
generated by taking a sequence of resourceless channels, and that
it is convex, which means that simply probabilistically mixing free
channels cannot generate any resource.

The most general way to manipulate a quantum channel is
represented by a quantum superchannel1, which we introduce in
Fig. 1. We are then interested in manipulating quantum channels
with transformations which can be regarded as free within the
constraints of the given theory. In order to apply our results to all
possible settings, we will make no specific assumptions about the
considered set of free superchannels, save for the weakest possible
constraint: that a free transformation Θ does not generate any
resource by itself; that is, for any free channel M 2 O, it holds
that ΘðMÞ 2 O. We use S to denote the set of all such resource-
preserving superchannels. By studying these transformations, we
will therefore obtain the most general bounds on the achievable
performance of any free channel manipulation protocol, since any
physically motivated choice of free transformations will necessa-
rily be a subset of S.

We stress that, as a special case, all of our results apply also to
the manipulation of the static resources of quantum states: they
can be viewed as quantum channels that act on a trivial input
space. For clarity, we will use F instead of O to denote the set of
free states when discussing state-specific applications.

No-go theorems for resource distillation. The task of distillation
can be understood as the transformation of a noisy resource
channel E into ‘pure’ or ‘perfect’ resources, which are represented
by some target channel T . Importantly, two distinct types of
channel resource theories can be distinguished. The first type is
concerned with the investigation of intrinsic channel resources;
this includes various resource theories of quantum communica-
tion and the related setting of quantum memories. In such cases,
it is often natural to regard some unitary channel Uð�Þ ¼ U � Uy

as the target of distillation protocols, representing noiseless
dynamical resources. The other type is concerned with an
underlying state-based resource and the manipulation of channels

in order to extract or utilise the state resource more effectively;
this includes, for instance, quantum entanglement, coherence, or
thermodynamics. The target can then be a replacement (or pre-
paration) channel Rϕð�Þ ¼ Trð�Þϕ which prepares a given
resourceful pure state. All of our results below apply to either of
these settings, with T denoting a unitary or a replacement
channel accordingly. Our task then is to understand when one
can achieve transformations such that FðΘðEÞ; T Þ≥ 1� ε, where
we use the worst-case fidelity26,27

FðE;F Þ ¼ min
ρ

Fðid� EðρÞ; id� F ðρÞÞ ð1Þ

to effectively benchmark the error of the transformation. The
choice of the worst-case fidelity as our figure of merit guarantees
that the fidelity between the outputs of the channels will be large
for any input state ρ, even when the channels are applied to a part
of the system.

We endeavour to characterise the ultimate restrictions on the
achievable performance of distillation by studying the trade-offs
between three different quantities: the transformation error ε, the
resources contained in the input channel E, and the resources of
the target channel. To this end, we will employ two different
resource measures. The resource robustness RO

22,28–30 and the
resource weight WO

31,32 are defined as

ROðEÞ :¼ min λj JE ≤ λJM; M 2 O
� �

; ð2Þ

WOðEÞ :¼ max λj JE ≥ λJM; M 2 O
� �

; ð3Þ
where JE is the Choi matrix of the given channel, and the
inequality is understood in terms of positive semidefiniteness.
The simple structure of the two quantities allows for a number of
useful properties to be shown, such as their monotonicity under
all free superchannels and submultiplicativity (see Supplementary
Notes 1 and 3). The measures correspond to convex optimisation
problems, in many relevant cases even reducing to efficiently
computable semidefinite programs. RO and WO are natural
generalisations of quantities defined at the level of quantum
states, e.g. RFðρÞ ¼ min λj ρ ≤ λσ; σ 2 F

� �
, where we recall that

F denotes free states in a considered resource theory. The
robustness previously appeared in various ways in the character-
isation of state transformations29,33–35, but the weight measure—
although a known geometric resource quantifier — has not been
connected with resource manipulation before.

To quantify the resources of the target channel, we will use the
fidelity-based measure of the overlap with free channels:

FOðT Þ :¼ max
M2O

FðT ;MÞ: ð4Þ

This can be thought of as a parameter that determines how
difficult a given target is to distil. Although we will show that this
parameter can be straightforwardly computed in most cases of
practical interest, in some contexts (such as quantum commu-
nication) an alternative figure of merit is often encountered: the
Choi-state fidelity36,37

~FOðT Þ :¼ max
M2O

F ~JT ;~JM
� �

; ð5Þ

where we denoted by ~JE the Choi matrix of a channel normalised
so that Tr~JE ¼ 1. In our discussion below, we will state our results
using the parameter FOðT Þ as this leads to the tightest bounds,
but the bounds remain valid also if one replaces FOðT Þ with
~FOðT Þ everywhere.
We now give universally applicable, fundamental limitations

on the performance of any resource distillation protocol.

Fig. 1 The general structure of a superchannel. Given the Hilbert spaces of
two quantum systems A and B, we write CPTP(A→ B) to denote the set of
quantum channels, i.e. completely positive and trace-preserving (CPTP)
maps between operators acting on spaces A and B. We associate with each
channel E : A ! B its Choi matrix JE :¼ id� EðΦþÞ, where Φþ ¼ ∑i;j iij i jjh j
is the unnormalised maximally entangled state and id is the identity
channel. Transformations of quantum channels are then maps from CPTP
(A→ B) to CPTP(C→ D), or (A→ B)→ (C→ D) in short. Under the
necessary physical requirement that any such mapping should always take
a quantum channel to a valid quantum channel, the most general form of a
channel transformation is given by a quantum superchannel1. Such a
transformation can be written as ΘðEÞ ¼ MRB!D � ðidR � EÞ �N C!RA

where N ;M are some pre- and post-processing quantum channels and R
denotes an ancillary system. For simplicity of notation, we often do not
state explicitly which spaces the channels are acting on.
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Theorem 1. If there exists a free superchannel Θ 2 S such that
FðΘðEÞ; T Þ≥ 1� ε for a target channel T , then

ε ≥ 1� FOðT Þ ROðEÞ ð6Þ
and

ε≥ ½1� FOðT Þ� WOðEÞ: ð7Þ
The bounds can be understood in two different ways: either as

a general no-go result establishing the minimal error allowed
within the constraints of the given resource theory, or, when ε is
fixed, as a bound for the resources of E necessary for the
distillation to be possible. The two bounds in Eqs. (6) and (7) are
very different from each other, in both a quantitative and
qualitative sense, and can complement each other in various
settings. We will aim to elucidate this with explicit examples and
discussions in the following sections and in the
Supplementary Notes.

As an immediate consequence of the Theorem, we see that the
exact transformation with ε= 0 is impossible whenever
WOðEÞ> 0, which is true e.g. for generic noisy channels with a
full-rank Choi matrix. Importantly, channels with WOðEÞ> 0
cannot be distilled to a pure target T even when the target is less
resourceful. This indicates strong constraints on distillation
characterised by the resource weight WO and establishes a
general no-go result in channel manipulation, extending earlier
partial results14.

One important difference between the two bounds is that,
when E is a pure (unitary or replacement) channel itself, then
WOðEÞ ¼ 0 and we gain no information from the weight bound.
However, ROðEÞ can provide a non-trivial error threshold even in
this case, making it useful also in unitary-to-unitary or pure-to-
pure transformations.

The result of Theorem 1 directly applies also to the
manipulation of quantum states, where now the free transforma-
tions S are in the form of quantum channels. Specifically, the

bounds

ε ≥ 1� FFðϕÞ RFðρÞ ð8Þ

ε ≥ ½1� FFðϕÞ� WFðρÞ ð9Þ
hold for any state ρ undergoing a distillation protocol with a
pure state ϕ as a target. This gives general error bounds on
transformations of state-based resources. While the state-based
robustness bound has previously appeared in ref. 34, the weight
bound constitutes an improvement over previously known
results, and in particular over a different approach to no-go
theorems for resource purification which was recently intro-
duced in ref. 14. In contrast to the framework of ref. 14, our
results can characterise the manipulation of all quantum states
(not only full-rank input states) and our quantitative bounds
are strictly better than the previously known ones. This allows
us to reveal substantially refined limitations on state-to-state
transformations, as we will shortly demonstrate in explicit
comparisons.

We will find that the bounds can tightly characterise one-shot
transformations for specific cases of channels. However, a major
strength of the bounds lies not simply in estimating the errors in
single-shot channel manipulation, but also in their applicability to
multi-copy and asymptotic manipulation protocols: we now show
that the bounds of Theorem 1 can reveal powerful restrictions on
distillation when multiple uses of a quantum channel are
considered.

Many-copy manipulation. In contrast to transformations of
quantum states, it does not suffice to consider channel manip-
ulation as acting on the tensor product E�n, but more complex
protocols need to be considered. The most general form of such
manipulation schemes are referred to as quantum processes (see
Fig. 2). We then use SðnÞ to denote all free quantum processes,
that is, all transformations ϒ of n channels such that the output

Fig. 2 The different ways to manipulate many copies of a quantum channel with free transformations. For quantum states, having access to multiple
copies of a state ρ is equivalent to acting on the tensor product ρ⊗n. A naive way to employ n copies of a given channel is to consider them in parallel as
E�n(a). However, a more general way to manipulate n copies of a channel is to employ a sequential (iterative) protocol (b), which can be understood as the
channel E being fed into a sequence of n free superchannels one after another, allowing one to use the output of the previous channel uses to improve the
transformation. Indeed, such protocols are known to provide advantages over parallel ones in some settings23,76–79, and this approach is commonly
employed to transform channels in the setting of various resource theories such as quantum communication17,80–82, entanglement83,84, or magic48.
However, even this does not represent the most general way to manipulate multiple channels within the setting of the given resource theory. When the
causal order of the channels is fixed, any n-channel transformation scheme by means of a quantum circuit can be expressed as a so-called quantum comb2

(c). Even more complex manipulation strategies are possible if one does not assume a definite causal order between the channel transformations, that is,
when one is not able to say in what order the channels will be used throughout the protocol (d). Such an approach allows one to treat the transformation
trajectories themselves as quantum objects, leading to concepts such as superpositions of different causal orders12,13 which can indeed provide advantages
over standard, causally ordered transformation methods12,79,85. These transformations are dubbed quantum processes, and we will use them to
characterise the most general physically realisable manipulation protocols involving multiple quantum channels.
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channel ϒðM1; ¼ ;MnÞ is a free channel whenever M1; ¼ ;
Mn 2 O. This approach will allow us to characterise the
performance of the most general protocols for manipulating
channels or states within the physical constraints of the given
resource.

Theorem 2. Given any distillation protocol ϒ 2 SðnÞ — parallel,
sequential, or adaptive, with or without a definite causal order —
which transforms n uses of a channel E to some target channel T
up to accuracy ε > 0, it necessarily holds that

n ≥ log1=WOðEÞ
1� FOðT Þ

ε
ð10Þ

and

n ≥ logROðEÞ
1� ε

FOðT Þ : ð11Þ

This gives general lower bounds on the overhead of distillation
that must be obeyed by any physical transformation protocol.
Once again, the bounds exhibit different behaviour: intuitively,
the regime of ε very close to 0 will be characterised more
precisely by the bound based on resource weight WO, while the
robustness RO will perform better for larger error and for input
channels E which are close to pure (unitary or replacement)
channels.

An important aspect of the bound in Theorem 2 is that it holds
regardless of the structure of the involved channel manipulation
process ϒ. This allows us to go beyond methods previously
employed in settings such as quantum communication, which
applied only to sequential protocols with a restricted structure.

As an immediate consequence of this result, the weight-based
bound in Theorem 2 shows that the number of uses of the
channel E needed to perform distillation must scale as log ð1=εÞ as
ε→ 0, establishing a universal limit on the overhead of distillation
protocols such as quantum gate synthesis or noisy quantum
communication.

Asymptotic manipulation. The ultimate limitations on trans-
forming a given state or channel are given by the maximal rate at
which the conversion E ! T can be performed with an
asymptotic number of channel uses, allowing for error that
vanishes asymptotically. Specifically, we will be interested in
protocols which transform n uses of a quantum channel E to rn
copies of the target channel T �rn up to error εn. Imposing that
the transformation is achieved exactly in the asymptotic limit,
that is, εn→ 0 as n→∞, and maximising over all such r gives us
the optimal asymptotic rate of converting E to T with free pro-
tocols. We will distinguish two different rates: an adaptive rate
radap which allows the most general, adaptive processes acting on
the input channels, and the parallel rate rpar which considers
parallel transformations of the form E�n ! T �rn (recall the
comparison in Fig. 2).

The rates of distillation of quantum channel resources are an
important aspect of understanding the limitations on resource
manipulation23,30,38, but little is known about them due to the
difficulty in characterising the asymptotic properties of channel-
based quantities25,39. Our methods allow us to establish two
general bounds on the transformation rates. We can use the
robustness RO to provide a general bound for the rate of any
manipulation protocol, as well as obtain an improved bound for
parallel protocols by suitably ‘smoothing’ the definition of the
robustness over channels within a small distance of the original
input E15,24,25,30.

Theorem 3. If the target channel T satisfies FOðT �nÞ ¼ FOðT Þn,
then

radapðE ! T Þ ≤
logROðEÞ

logFOðT Þ�1 ; ð12Þ

rparðE ! T Þ ≤
D1

O ðEÞ
logFOðT Þ�1 ; ð13Þ

where D1
O ðEÞ :¼ limδ!0lim supn!1

1
n logR

δ
OðE�nÞ with

Rδ
OðEÞ :¼ minFð~E;EÞ ≥ 1�δROð~EÞ.
The result establishes universal bounds on the achievable rate

under any physical transformation protocol. Importantly, both of
our bounds are strong converse bounds, that is, they sharply
characterise the threshold in achievable performance — when a
rate exceeds either of our bounds, the transformation fidelity
necessarily goes to 0, meaning that the error will grow very large
and distillation cannot be reliably performed. The Theorem
immediately applies in many settings of practical significance, as
long as the condition FOðT �nÞ ¼ FOðT Þn is satisfied for the
given target channel. This is a natural property that holds true
both in dynamical resources such as communication, as well as in
state-based channel resources such as entanglement, magic,
coherence, or thermodynamics (see the forthcoming Table 1).

In the majority of practically relevant settings, the robustness RO
is submultiplicative under tensor product, meaning that
D1

O ðEÞ≤ logROðEÞ. Hence, the bound on rpar using D1
O ðEÞ might

provide an improvement over the robustness-based bound,
prompting the question of whether one can actually evaluate the
tighter bound. Notably, the regularisation D1

O ðEÞ has been
computed exactly for a set of channels relevant in the study of
quantum communication15, which we will discuss in more detail
shortly. The recent work of ref. 25 began a systematic investigation
of different regularisations in channel-based resource theories, but
their general computability remains an open question. For quantum
states, the regularisation D1

F ðρÞ ¼ limδ!0limn!1
1
n logR

δ
Fðρ�nÞ

can be computed exactly under very mild assumptions on the set
F33, and it reduces to the regularised relative entropy of a resource.
In such cases, our result recovers the fact that rates of distillation in
resource theories of states are limited by the regularised relative
entropy33,40. We note also that related asymptotic bounds were
considered in ref. 23 for the case of state-based channel resource
theories.

Applying the bounds in practice. We stress again that our main
results discussed in Theorems 1–3 apply to general convex
resource theories of quantum channels and states, encompassing
a wide variety of use cases. Since our discussions so far have
presented them in a rather abstract manner, we will now discuss
how the bounds can be evaluated in specific theories of interest.

With the exception of the regularised asymptotic bound in
Theorem 3, all of our results depend only on three quantities: the
overlap FOðT Þ of the target channel, and either the robustness
ROðEÞ or the weight WOðEÞ of the input. In practical settings of
interest, the choice of the target T is motivated by physical
considerations — representing, for instance, a maximally
resourceful channel or state, or a particularly costly resource —
and the value of the parameter FOðT Þ is typically known, so we
can directly plug these quantities into the bounds established in
Theorems 1–3. We collect some of the most important examples
of such resources, together with the values of FOðT Þ, in Table 1.
All that remains now is to evaluate RO or WO for desired input
channels. Fortunately, in many theories of interest, these two
quantifiers can be computed as semidefinite programs, and often
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even evaluated or bounded analytically by utilising their convex
duality and constructing suitable feasible solutions.

It will be instructive to discuss in more detail the applications
to two fundamental examples. Full technical details and
additional results are provided in Supplementary Note 4.

Application: gate synthesis and magic state distillation. Uni-
versal fault-tolerant quantum computation requires, in addition
to the easily implementable Clifford gates, the use of costly non-
Clifford unitaries such as the T gate41. Such gates are often
implemented through the process of magic state injection42,
which employs magic (non-stabiliser) states — states that cannot
be obtained with stabiliser operations alone — to realise general
quantum gates. Magic states can provide feasible ways to syn-
thesise general quantum circuits, but the main bottleneck in their
efficient use is the resource cost associated with the required
magic state distillation protocols9. Understanding the limitations
of such protocols and characterising the precise relations between
magic state distillation and gate synthesis is thus highly important
in paving the way to fault-tolerant quantum computation9,43.

In this setting, our results can be employed in two different
ways: either directly at the level of channel manipulation (gate
synthesis), or through an application to the task of magic state
distillation. They therefore advance the resource-theoretic
approach to magic44–48 by explicitly shedding light on the
precise quantitative connections between the channel-based
theory and the underlying state-based resource. Here, the set of
free channels O can be understood as all stabiliser operations, or
the larger set of completely stabiliser-preserving operations46. We
can then directly apply Theorems 1–3 to immediately establish a

number of bounds which can characterise the ultimate limitations
in both exact and approximate transformations between channels
and states in these resource theories. The relevant quantities RO,
WO, and FO are computable as semidefinite programs in this
setting, and for many channels of interest, such as quantum gates
from the third level of the Clifford hierarchy42, the measures
simplify to known quantities like the state-based stabiliser fidelity
FF

49 (see Supplementary Note 4). Applied at the level of states,
our approach — and in particular the weight-based bound —
constitutes a substantial improvement over the recent findings of
refs. 14,50 where lower bounds on the resource cost of magic state
distillation were established.

Our results are demonstrated in Fig. 3, where we plot the
performance of our bounds in the transformation of the T gate T
= diag(1, eiπ/4)41 or the associated Tj i state, affected by
depolarising noise, to the controlled-controlled-Z gate CCZ. We
see that our results give non-trivial bounds on the error in all
parameter regimes, revealing large errors even in cases where
previous bounds could not do so. Notably, this yields state-of-the-
art lower bounds on the overhead of magic-state distillation, as
well as general bounds directly for the task of quantum gate
synthesis.

Application: quantum communication. The quantum capacity
QðEÞ characterises the rate at which quantum information can be
communicated through a channel, and bounding this quantity is
a fundamental problem in quantum communication40,51,52. It is
often useful to allow the communicating parties to use some
assistance — in the form of shared correlations, or the ability to
perform some limited set of joint operations— in order to aid the

Table 1 Applicability of our bounds to common quantum resources.

Channel resource Target channel U FOðUÞ FOðU�mÞ ¼? FOðUÞm Computability of RO and
WO

Quantum communication assisted by:
no-signalling transformations53 Identity channel idd 1

d2
Yes SDP

separability-preserving
transformations

Identity channel idd 1
d
72 Yes Convex program (NP-hard)

PPT-preserving transformations Identity channel idd 1
d
58 Yes SDP

Magic of many-qubit quantum
channels46

Qubit T gate T= diag(1, eiπ/4) 1
4 ð2þ

ffiffiffi
2

p
Þ49 Yes49 SDP

Controlled-controlled-Z gate 9
16
49 Yes49 SDP

Magic of many-qudit quantum
channels48

Qutrit T gate
T= diag(e2πi/9, 1, e−2πi/9)

ð1þ 2 sinðπ=18ÞÞ�148 Yes47 * SDP

State resource Target state ϕ
�� �

FFðϕÞ FFðϕ�mÞ ¼? FFðϕÞm Computability of RF
and WF

Quantum entanglement73 Maximally entangled state 1ffiffi
d

p ∑d�1
i¼0 iij i 1

d
72 Yes Convex program

(NP-hard)
Non-positive partial transpose73 Maximally entangled state 1ffiffi

d
p ∑d�1

i¼0 iij i 1
d
58 Yes SDP

Quantum coherence74 Maximally coherent state 1ffiffi
d

p ∑d�1
i¼0 ij i 1

d Yes SDP

Magic of many-qubit states44,45 T state 1ffiffi
2

p ð 0j i þ eiπ=4 1j iÞ 1
4 ð2þ

ffiffiffi
2

p
Þ49 Yes49 SDP

CCZ state 1
8 ð1; ¼ ; 1;�1ÞT 9

16
49 Yes49 SDP

Magic of many-qudit states44 Hadamard ‘+’ state
/ ð1þ

ffiffiffi
3

p
Þ 0j i þ 1j i þ 2j i

1
6 ð3þ

ffiffiffi
3

p
Þ47 Yes47 SDP

Norrell state 1ffiffi
6

p ð 0j i � 2 1j i þ 2j iÞ 2
3
47 Yes47 SDP

Quantum thermodynamics with
Hamiltonian H ¼ ∑iEi ij i ih j75

Energy eigenstate ij i e�βEi

Z (β: inverse temp.,
Z: partition function)

Yes Analytical

We give an overview of quantum resources together with natural choices of target channels or states which are often used in distillation tasks. The list is by no means complete but is meant to facilitate
the application of our bounds in a selection of important settings. We see in particular that the parameter FOðT Þ admits an exact analytical expression for all the target states on the list, and in addition is
multiplicative under tensor product, which means that all of the bounds of this work (including the asymptotic bounds of Theorem 3) apply immediately. Furthermore, we see that the majority of cases
discussed here allow for the robustness and weight measures to be computed as semidefinite programs (SDP). In the main text and in Supplementary Note 4, we provide more details about the theories
of quantum communication and the magic of channels and states, showing exactly how the bounds can be applied and how they perform.
* In the case of the qutrit T gate, instead of the quantity FO as defined in Eq. (4), a closely related fidelity-type measure called the ‘min-thauma’47 is used, which allows for an easier computation while
otherwise acting in the same way. This makes no difference in the statement or properties of our bounds, so we make no distinction here and instead refer to Supplementary Note 4 for details.
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communication. This traditional setting of quantum commu-
nication can be encompassed in our resource-theoretic frame-
work of channel manipulation: the goal can be understood as
using free superchannels (encoding and decoding operations) in
order to purify a noisy quantum channel to the qubit identity
channel id2, with the latter representing perfect noiseless com-
munication. Here, we will see that our general results can be
readily applied to assess several fundamental limitations in
this task.

For instance, the setting of no-signalling (NS) assisted
communication15,16,53–55 allows Alice and Bob to perform joint
coding protocols which obey the no-signalling condition from
Alice to Bob and vice versa. First, it is insightful to see what the
bounds of Theorem 1 tell us about one-shot transformations E !
id2 in this setting. Here, the maximal fidelity achievable under no-
signalling codes can be computed with an SDP53, which allows us
to gauge the performance of our bounds exactly. We demonstrate
this with a numerical investigation in Fig. 4, showing that our
results can become exact in some cases, and the two bounds can
complement each other in different situations. Beyond such
single-shot transformations, when multiple uses of channels are
considered, our bounds can lead to tight asymptotic results. In
particular, Theorem 3 gives a strong converse bound on the NS-
assisted quantum capacity as QNSðEÞ≤D1

O ðEÞ. Importantly, the
quantity D1

O ðEÞ can be computed exactly in this case15, and it

equals the mutual information of the channel56. Moreover, this is
actually an achievable rate of communication53,56, which means
that QNSðEÞ is given exactly by the mutual information of E. In
addition to recovering this tight bound, our results also show the
strong converse property of NS-assisted communication15,16,
which says that the capacity QNSðEÞ is a strong converse rate of
communication.

Another fundamental paradigm is quantum communication
assisted by local operations and classical communication
(LOCC)4. Due to the complexity of describing LOCC, various
approximations of this class of channels are often
employed40,53,57–59, the most common ones being the set of
separable channelsOSEP

57 (maps whose Choi matrix is separable)
and positive partial transpose (PPT) channels OPPT

58 (maps
whose Choi matrix is PPT). We can readily apply our results in
two different ways, by considering either the capacity QSEP of
communication assisted by protocols which preserve OSEP, or the
capacity QPPT where Alice and Bob can perform joint manipula-
tion protocols which preserve OPPT. Theorems 1–3 then
immediately provide a number of bounds on quantum capacity
assisted by the most general adaptive protocols, in both the one-
shot and asymptotic settings. Notably, we obtain that the
robustness ROSEP

gives a strong converse bound to QSEP. We
show, in fact, that the robustness in this case equals a quantity
known as the max-relative entropy of entanglement17, therefore

Fig. 3 Bounding the performance of gate synthesis and magic state distillation. We plot lower bounds on: a, b the error ε necessarily incurred (as per
Theorem 1); c, d the number of copies necessary (as per Theorem 2) in the given transformations between the depolarised T gate/state and the
depolarised CCZ gate/state. The bounds are compared with the previous best general bound for magic state distillation introduced in ref. 14. Here, p is the
noise parameter of the depolarising channel DpðρÞ ¼ ð1� pÞρþ p 1

2. In (a) we explicitly see that the robustness bound indicates a significant error also in
the noiseless case (p= 0), whereas the weight bound becomes trivial for noiseless inputs. In (b) we allow three copies of the noisy T state to be used in the
transformation here, both of our bounds significantly improve on the results of ref. 14, and in particular the robustness bound reveals that an error of≈ 0.1 is
the best that one can hope for when converting Tj i�3 ! CCZj i with any free transformation protocol. In (c) and (d) we demonstrate the substantial
advantages of the weight bound in bounding distillation overhead. Comparing the bounds for gate synthesis from the noisy T gate in (c) and for magic state
distillation from the noisy T state in (d) we can see that the bounds impose much higher requirements on the number of noisy states required to succeed.
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recovering and extending a bound of ref. 17, while providing an
arguably simpler proof technique. In the PPT setting, we get an
analogous result, which is closely related to bounds based on the
so-called max-Rains information18,19 — these constitute, in many
cases, the best known efficiently computable bounds on LOCC-
assisted capacity.

The above shows the direct applicability of our formalism to
upper bounding channel capacities in a number of different
settings. Our methods thus not only provide useful benchmarks
of practical significance, but also unify different specialised
approaches and show them all to be part of a broader, resource-
theoretic framework for the manipulation of quantum channels,
which extends beyond entanglement and communication theory.

Extension to probabilistic protocols. Our results can also be
extended to the setting where the channel transformations are not
realised deterministically, but can fail with a certain probability.
Here, we establish general trade-offs between the success prob-
ability and the error in the transformation, extending the insights
and establishing bounds that take into account the non-
deterministic character of the transformations. The results sug-
gest that potential advantages of probabilistic protocols over
deterministic ones can be found in some cases. Because of the
technicality of such extensions caused by the more complicated
nature of probabilistic channel transformations60, we defer the
details to the Methods and Supplementary Note 5.

Discussion
We introduced universal quantitative bounds on the achievable
performance of any deterministic distillation protocol in general
quantum resource theories. We showed that our bounds can be
used to establish fundamental no-go relations in the manipulation
of quantum channels, introduce powerful restrictions on the
overhead of any physical distillation protocol using the most
general, adaptive manipulation schemes with indefinite causal
order, and lead to several strong converse bounds for the
asymptotic transformations of channels. We demonstrated the
versatility of our bounds through applications to quantum com-
munication and stabiliser-state quantum computation, using our
bounds to characterise these important resource theories. Finally,
we extended the insights provided by our bounds to distillation
protocols which allow probabilistic implementations.

A key feature of our bounds is their generality: using a general
resource-theoretic approach, we were able to establish limitations
on the manipulation of quantum resources under only the most
basic assumptions enforced by the structure of quantum
mechanics. This reveals common aspects shared by all types of
quantum resources, establishing our bounds as fundamental
quantitative limitations on channel manipulation. Importantly,
however, such breadth of this approach does not diminish its
usefulness in concrete settings of interest — we have shown that
all of our bounds can be directly applied in a multitude of relevant
resources, and we expect them to find use also in many settings

Fig. 4 Errors in one-shot quantum communication. Lower bounds on the error ε in the transformation of channels to the qubit identity channel id2 under
no-signalling codes SNS. We plot the bounds obtained from Theorem 1 for: a, b the qubit depolarising channel DpðρÞ ¼ ð1� pÞρþ p 1

d; (c, d) the dephrasure
channel Ep;qðρÞ ¼ ð1� qÞ½ð1� pÞρþ pZρZ�þ q 2j i 2h j86, where we set q= p2. In (a) the depolarising channel satisfies WOðDpÞ ¼ p, and the robustness and
weight-based bounds are actually equal: we have ε ≥ p(d2− 1)/d2. In fact, here the bounds match the achievable fidelity, meaning that Theorem 1
quantifies the error in the one-shot transformation Dp ! id2 under SNS exactly. The robustness bound is also seen to be tight in (c). The weight bound can
become more effective than the robustness bound when we consider more copies of the input channel, as seen in (b) and (d). The importance of the
weight bound is highlighted here, as it can certify that zero-error (ε= 0) communication is impossible for all p > 0.
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that we have not considered here explicitly. On the practical side,
our results shed light in particular on the important problem of
purifying noisy resources. Because of the unavoidably noisy
character of near-term quantum technologies10, such distillation
schemes are often necessary, and we therefore anticipate our
bounds to find use in the practical investigation of the limitations
of quantum information processing in a broad range of settings
such as channel discrimination61,62, noise estimation63, pro-
gramming of quantum channels64,65, and covariant error
correction66–68.

An interesting direction to consider in further research would
be to understand precisely when and how the bounds can be
achieved in practical setups, and how the different types of
transformations — parallel, adaptive, or ones with an indefinite
causal order — perform in various types of manipulation tasks. It
would also be intriguing to apply our methods to the transfor-
mation of other types of dynamical resources, such as Bell non-
locality or quantum contextuality, which may provide further
operational insights into the fundamental advantages enabled by
quantum theory in different settings.

Note. During the completion of this paper, we became aware of a
related work by Fang and Liu69 where the authors independently
considered the resource weight and obtained results related to the
weight-based bounds in our Theorems 1 and 2.

Methods
We give an overview of the main techniques used to establish our results in
Theorems 1–3. The complete technical details, along with additional discussion
and extensions, can be found in the Supplementary Information.

One-shot bounds (Theorem 1). We will use the fact that both the robustness and
weight measures can be expressed in terms of the max-relative entropy
Dmaxðρ k σÞ :¼ log inf λj ρ ≤ λσ

� �
70. Defining Rmaxðρ k σÞ :¼ 2DmaxðρkσÞ , for any

channels E;F : A ! B one can define the optimised channel divergence71

RmaxðE k F Þ :¼ max
ψ

Rmaxðid� EðψÞ k id� F ðψÞÞ: ð14Þ

This generalisation of the max-relative entropy to channels obeys some useful
properties, and in particular it holds that71

RmaxðE k F Þ ¼ RmaxðJE k JF Þ; ð15Þ
that is, it suffices to consider the Choi matrices of the channels to evaluate the max-
relative entropy. Exploiting the properties of Rmax and the convex structure of the
involved optimisation, we can then express the robustness measure RO as

ROðEÞ ¼ min
M2O

RmaxðE k MÞ ð16Þ

¼ min
M2O

max
ψ

Rmaxðid� EðψÞ k id�MðψÞÞ ð17Þ

¼ max
ψ

min
M2O

Rmaxðid� EðψÞ k id�MðψÞÞ: ð18Þ

In a very similar way, the weight WO can be written

WOðEÞ�1 ¼ min
M2O

RmaxðJM k JE Þ ð19Þ

¼ min
M2O

max
ψ

Rmaxðid�MðψÞ k id� EðψÞÞ ð20Þ

¼ max
ψ

min
M2O

Rmaxðid�MðψÞ k id� EðψÞÞ: ð21Þ

The next step is to use convex duality to express the robustness and weight as

ROðEÞ ¼ max
ψ

�
Tr X id� EðψÞ� �

X ≥ 0;j

Tr X id�MðψÞ� �
≤ 1 8M 2 O

�
;

ð22Þ

WOðEÞ ¼ min
ψ

�
Tr X id� EðψÞ� �

X ≥ 0;j

Tr X id�MðψÞ� �
≥ 1 8M 2 O

�
:

ð23Þ

The core of the idea behind the proof of Theorem 1 is then as follows. Due to
the purity of the target channel T (whether it is a unitary channel U or a
replacement channel Rϕ), the expression for the fidelity FO simplifies: we either

have

FOðUÞ ¼ max
M2O

Tr id� Uðψ?Þ id�Mðψ?Þ� �
ð24Þ

for some optimal pure state ψ⋆, or, in the state case, we can write

FFðϕÞ ¼ max
σ2F

TrðϕσÞ: ð25Þ

This allows us to use either the target channel U or the target state ϕ to construct
feasible solutions for the dual form of RO and WO . Specifically, the operator

1
FOðUÞ id� Uðψ?Þ� �

or 1
FFðϕÞ ϕ can be used to lower bound RO , while the operator

1
1�FOðUÞ 1� id� Uðψ?Þ� �

or 1
1�FFðϕÞ 1� ϕ

� �
gives an upper bound on WO . These

bounds immediately lead to the restrictions stated in Theorem 1.

Many-copy bounds (Theorem 2). Mathematically, an n-channel quantum process
ϒ — the most general physically realisable manipulation protocol involving mul-
tiple quantum channels — is an n-linear map which takes n channels as input and
outputs a single channel. Although the property of complete positivity is sometimes
expected of such transformations2,13, we do not require it, and all of our results are
valid as long as the maps in consideration satisfy ϒðN 1; ¼ ;N nÞ 2 CPTP for any
N 1; ¼ ;N n 2 CPTP. We can then define the set of free quantum processes as
those which always result in a free channel, provided that all inputs are free:

SðnÞ :¼ ϒj ϒðM1; ¼ ;MnÞ 2 O 8M1; ¼ ;Mn 2 O
� �

: ð26Þ
In this sense, superchannels can be understood as (completely positive) processes
acting on a single input.

Our main technical contribution is to show a very general type of sub- or super-
multiplicativity that the robustness and weight measures obey. In particular, we
show that, given any collection of n channels ðE1; ¼ ; EnÞ, it holds that

WO ϒðE1; ¼ ; EnÞ
� �

≥
Y
i

WOðEiÞ ð27Þ

and

RO ϒðE1; ¼ ; EnÞ
� �

≤
Y
i

ROðEiÞ ð28Þ

for any free process ϒ 2 SðnÞ. The basic idea behind the proof is to take an optimal
channels Mi such that each Ei satisfies JEi ≥ μiJMi

in the case of WO or JEi
≤ μiJMi

in the case of RO . By showing that ϒðμ1M1; μ2M2; ¼ ; μnMnÞ forms a valid
feasible solution for WO ϒðE1; ¼ ; EnÞ

� �
or RO ϒðE1; ¼ ; EnÞ

� �
, we obtain our

desired result. Notably, the proof uses only the positivity and n-linearity of the free
process ϒ, requiring no additional assumptions about the structure of the
transformation.

Combined with Theorem 1, our result then immediately leads to the statement
of Theorem 2. However, we stress that the property of sub- or super-
multiplicativity that we have shown is much more general: the target in the
transformation need not be a pure (unitary or replacement) channel, meaning that
the inequalities in Eqs. (27)–(28) are valid for any channel manipulation protocol.
Although in the main text we have focused on the application to the task of channel
distillation, this general feature of the robustness and weight measures can find use
in broader channel processing tasks that involve multiple channels.

For instance, the task of channel synthesis is concerned with simulating the
action of the given channel E by employing multiple uses of another channel, F ,
and processing them with a free transformation protocol ϒ. We then immediately
obtain lower bounds on the required number of uses of F under any physical
transformation protocol:

n≥
logROðEÞ
logROðF Þ ; n≥

logWOðEÞ
logWOðF Þ ; ð29Þ

where in the second inequality we have assumed that WOðEÞ and WOðF Þ are not
both 0. When F is chosen to be a pure resource channel such as the target T , this
can be understood as the opposite task to distillation — resource dilution.

Asymptotic bounds (Theorem 3). Both of our asymptotic bound in Theorem 3
are consequences of the results of Theorem 1 and 2 coupled with the assumption
that FOðT �mÞ ¼ FOðT Þm . This means in particular that they apply to general
manipulation protocols ϒ without making assumptions about their structure, in
contrast to most previous asymptotic bounds in the literature which explicitly
considered sequential manipulation protocols with a fixed causal order.

We note that the second, regularised bound for parallel channel
transformations (Eq. (12)) requires a more careful approach, relying also on some
technical bounds on the fidelity distance between channels. In particular, the
‘smoothing’ parameter δ encountered here is the reason why the result applies to
parallel manipulation protocols only — an extension to more general
transformations would entail an optimisation in the space of quantum combs (or
quantum processes), and a straightforward application of our methods to this case
does not appear to be possible. Whether this can be circumvented with a different
approach remains an open question.
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Extension to probabilistic protocols. We have so far focused our discussion on
deterministic channel transformations where superchannels (and quantum pro-
cesses) transform channels to channels. To investigate a probabilistic version of
such protocols, we need to consider ‘sub-superchannels’: the linear maps
which transform quantum channels to probabilistic implementations of channels
in the form of completely positive, trace–non-increasing maps (subchannels), even
when acting only on a part of a larger system60. The operational meaning of
these maps becomes clear by considering them as constituents of super-
instruments, i.e., collections of sub-superchannels f~Θig each representing a single
outcome of a probabilistic transformation such that the overall transformation
∑i

~Θi is a superchannel. Just as the usual quantum instrument, a superinstrument
can be assumed to come with a classical register recording which sub-
superchannel was applied. Then, probabilistic protocols are declared successful
when we learn that ~Θ0 was realised and are judged to have failed otherwise. To
introduce the notion of free transformation in this context, let us first define the
set of free subchannels. If we think of free subchannels as a probabilistic version of
free channels, it is natural to impose that every free subchannel probabilistically
realises a transformation implemented by some free channel. This observation
motivates us to define the set of free subchannels ~O with respect to the given set of
free channels O as

~O :¼�
~Mj8ρ 2 D; 9 M 2 O; t 2 ½0; 1�

s:t: id� ~MðρÞ ¼ t � id�MðρÞ�; ð30Þ

and we correspondingly define the set of free sub-superchannels as
~S :¼ ~Θj8M 2 O; ~ΘðMÞ 2 ~O

n o
.

We also need to establish a figure of merit for the probabilistic purification
protocol. A subtlety is that the probability of the occurrence of a sub-superchannel
~Θ depends not only on the input channel E, but also on the input state ψ as
Tr½id� ~ΘðEÞðψÞ�. Integrating this observation with the definition of the fidelity for
channels FðE; T Þ, we define the fidelity between the target channel and an output
subchannel conditioned on its occurrence as

Fcondð~ΘðEÞ; T Þ :¼ min
ψ

F
id� ~ΘðEÞðψÞ

pðψÞ ; id� T ðψÞ
	 


ð31Þ

where pðψÞ ¼ Tr½id� ~ΘðEÞðψÞ�.
We can then establish an analogue of Theorem 1 for probabilistic channel

manipulation. Specifically, we show that if there exists a free sub-superchannel
~Θ 2 ~S which achieves the transformation E ! T with fidelity
Fcondð~ΘðEÞ; T Þ≥ 1� ε and probability p ¼ Tr½id� ~ΘðEÞðψÞ�, then

ε≥ 1� ROðEÞ Fψ
OðUÞ

p
ð32Þ

and

ε≥ 1� 1� ð1� Fψ
OðUÞÞWOðEÞ
p

ð33Þ

where Fψ
OðUÞ :¼ maxM2OFðid� UðψÞ; id�MðψÞÞ. This resembles our previous

bounds, but now explicitly incorporates the dependence on a probability p.
Another type of bound for probabilistic transformations can be obtained by

taking M 2 O to be a free channel such that JE ≥WOðEÞJM. We then obtain

ε ≥ ð1� Fψ
OðUÞÞ

WOðEÞTr½ idð � ~ΘðMÞðψÞ�
p

: ð34Þ

This bound addresses the question of whether the no-go statement implied by
Theorem 1, which says that perfect purification with ε= 0 is impossible for any
channel with WOðEÞ> 0, remains valid in probabilistic cases. Eq. (34) implies that
if Tr½id� ~ΘðMÞðψÞ�> 0, the no-go theorem still holds. On the other hand, if
Tr½id� ~ΘðMÞðψÞ� ¼ 0, meaning that the free part of E is completely cut off by the
selective operation ~Θ, then this does not give us any insight into ε. This is actually a
natural consequence because such a perfect purification is indeed possible, as we
discuss in Supplementary Note 5 in detail.
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