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Reversibility of quantum resources through
probabilistic protocols

Bartosz Regula 1 & Ludovico Lami 2,3,4

Among the most fundamental questions in the manipulation of quantum
resources such as entanglement is the possibility of reversibly transforming all
resource states. The key consequence of this would be the identification of a
unique entropic resource measure that exactly quantifies the limits of
achievable transformation rates. Remarkably, previous results claimed that
such asymptotic reversibility holds true in very general settings; however,
recently those findings have been found to be incomplete, casting doubt on
the conjecture. Here we show that it is indeed possible to reversibly inter-
convert all states in general quantum resource theories, as long as one allows
protocols that may only succeed probabilistically. Although such transfor-
mations have some chance of failure, we show that their success probability
can be ensured to be bounded away from zero, even in the asymptotic limit of
infinitely many manipulated copies. As in previously conjectured approaches,
the achievability here is realised through operations that are asymptotically
resource non-generating, andwe show that this choice is optimal: smaller sets
of transformations cannot lead to reversibility. Our methods are based on
connecting the transformation rates under probabilistic protocols with strong
converse rates for deterministic transformations, which we strengthen into an
exact equivalence in the case of entanglement distillation.

How to measure and compare quantum resources? As evidenced by
the plethora of commonly used quantifiers of resources such as
entanglement1,2, this seemingly basic question has many possible
answers, and it may appear as though there is no unambiguous way to
resolve it. However, it is important to keep inmind that, besides simply
assigning some numerical value to a given quantum state, one often
wishes to compare quantum resources operationally. Is it then possi-
ble for a resource quantifier to indicate exactly how difficult it is to
convert one resource state into another? Following this pathway is
reminiscent of the operational approach used to study thermo-
dynamics, where indeed a unique resource measure — the entropy —

emerges naturally from basic axioms3,4. A phenomenon that is inti-
mately connected with the existence of such ameasure is reversibility:

two comparable states of equal entropy can always be connected by a
reversible adiabatic transformation3,4.

Reversibility was observed also in the asymptotic manipulation of
quantum entanglement of pure states5, prompting several conjectures
about the connections between entanglement and thermodynamics,
and in particular about the existence of a unique operational measure
of entanglement that would mirror the role of entropy6–10. In the
asymptotic setting, reversibility is typically understood in terms of
asymptotic transformation rates r(ρ→ω): given many copies of a state
ρ, howmany copies of another state ω can we obtain per each copy of
ρ? The question of resource reversibility then asks whether
r(ρ→ω) = r(ω→ ρ)−1, meaning that exactly as many copies of ω can be
obtained in the transformation as are needed to transform them back
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into ρ. Although entanglement of noisy states may exhibit irreversi-
bility in many contexts11–14, hopes persisted that an operational
approach allowing for universal reversibility could be constructed,
leading to the identification of a unique asymptotic measure of
entanglement15.

A remarkable axiomatic framework emerged, first for
entanglement9,10 and later for more general quantum resources16,
which claimed that reversibility can indeed always be achieved under
suitable assumptions. Such a striking property would not only estab-
lish a unique entropicmeasureof quantumresources, but also connect
the broad variety of different resources in a common operational
formalism. However, issues have transpired in parts of the proof of
these results17,18, putting this general reversibility into question. As of
now, there is no known framework that can establish the reversibility
of general quantum resource theories — and in particular quantum
entanglement— even underweaker assumptions.What ismore, recent
results demonstrated an exceptionally strong type of irreversibility of
entanglement14, casting doubt on the very possibility of recovering
reversible manipulation whatsoever.

In this work, we resolve the question by constructing the first
complete reversible framework for general quantum resources,
including entanglement. Our setting closely resembles the original
assumptions of the reversibility conjectures9,10,16, with only one
change: we allow probabilistic conversion protocols. That is, we
study transformations which allow for some probability of failure,
and we demonstrate that in this setting the conversion rates are
exactly given by the entropic resource measure known as the reg-
ularised relative entropy, identifying it as the unique operational
resource quantifier.

The use of probabilistic protocols is a distinguishing feature of
our approach, necessitating a careful consideration of how exactly
to quantify the asymptotic rates of such transformations. We
employ a definition which focuses on the number of copies of
states that are undergoing the transformation, discounting the
success probability of the protocols. Although seemingly more
permissive than some previously used definitions, we explicitly
ensure that the protocols that we study are not unphysically diffi-
cult to realise: we only allow transformations whose probability of
failure does not become prohibitively large, in the sense that there
always remains a constant non-zero chance of successful conver-
sion, even when manipulating an unbounded number of quantum
states. Such rates are well behaved and closely connected to con-
ventional asymptotic transformation rates studied in quantum
information.

We stress that, although conceptually similar, our approach fol-
lows an alternative pathway that does not exactly recover the rever-
sibility conjectured in refs. 9,10,16, as the latter relied only on strictly
deterministic transformation rates. However, in light of the similarities
and relations thatweestablish between probabilistic and deterministic
rates, we consider our results to be strong supporting evidence in
favour of reversibility being an achievable phenomenon in general
quantum resource theories.

On the technical side, the way we avoid issues associated with
the generalised quantum Stein’s lemma19 that undermined the ori-
ginal reversibility claims, is to use only the strong converse part of
the lemma, which is still valid17. Strong converse rates are typically
understood as general no-go limitations on resource transforma-
tions, but here we turn them into achievable rates precisely by
employing probabilistic protocols. For the special case of entangle-
ment distillation, we show that these two concepts— strong converse
rates in deterministic transformations on one side, and probabilistic
conversion rates on the other — are exactly equivalent, which holds
true also in the most practically relevant settings of entanglement
manipulation such as under local operations and classical commu-
nication (LOCC).

Results
Resource transformation rates
Quantum resource theories represent various settings of restricted
quantum information processing2. Let us denote by O the set of
operations which are freely allowed within the physical setting of the
given resource theory. Our discussion of reversibility will require a
specific choice ofO, but for now it may be understood as a general set
of permitted operations.

The deterministic transformation rate rp = 1(ρ→ω) is defined as the
supremum of real numbers r such that n copies of the state ρ can be
converted into rnb c copies of the target state ω using the free opera-
tions O. The conversion here is assumed to be deterministic, i.e. all
transformations are realised by completely positive and trace-
preserving maps (quantum channels). However, the process is only
required to be approximate, in the sense that some error εn is allowed
in the transformation, as long as it vanishes in the limit as n→∞.

In many practical contexts, one may be willing to relax the
assumption that the error must tend to zero— it may, for instance, be
appealing to tolerate somemanageable error in the transformation if it
could lead to increased transformation rates. The ultimate upper
bound that constrains the improvements that can be gained through
such trade-offs is represented by the strong converse rate
ryp = 1ðρ ! ωÞ. It is defined as the least rate r such that, if we attempt the
conversion ρ�n ! ω� r0nb c at any larger rate r0 > r, then even approx-
imate transformations with large error become impossible.

Another common way to increase the capabilities in resource
manipulation is to allow for probabilistic transformations20–26. Prob-
abilistic protocols in quantum information theory are represented by a
collection of completely positive, but not necessarily trace-preserving
maps fEðiÞgi, such that the total transformation

P
iEðiÞ preserves the

trace. We say that ρ can be converted to ω if there exists a free prob-
abilistic operation EðiÞ 2 O such that EðiÞ ðρÞ

TrEðiÞ ðρÞ = ω; the probability of this
transformation is p = TrEðiÞðρÞ. The question then is how to exactly
define the asymptotic rate of such protocols.

Consider a sequence of probabilistic operations ðEnÞn such that
each En 2 O converts ρ⊗n to a state which is εn-close to the target
state ω� rnb c with the error vanishing asymptotically. We will write
pn = Tr Enðρ�nÞ for the probability of successful conversion. One
way to quantify the rate of such a protocol is to count the average
number of copies of quantum states needed to realise the trans-
formation, which means that our rate would be given by pnr rather
than just r, since the protocol needs to be repeated 1/pn times on
average to ensure success. But one may argue that there is an issue
with such a definition: is it fair to say that manipulating n copies of a
quantum state about 1/pn times is as difficult as manipulating the
larger number of n/pn copies all at once? This definition of a rate
would make it seem so, since it counts the total number of copies
needed in the protocol, and disregards the question of howmany of
those copies need to be coherentlymanipulated together. If the rate
is supposed to quantify the difficulty in performing a state trans-
formation, then this may not be an accurate assessment, consider-
ing that it is the manipulation of quantum states, rather than their
generation, that is typically the bottleneck in practical quantum
information processing.

An alternative way is then to simply say that, if ρ⊗n is approxi-
mately converted toω� rnb c — even probabilistically— then the rate is
r. This definition focuses on the number of copies of states that are
being transformed at once, and it does not count the probability
pn = Tr Enðρ�nÞ itself as part of the rate. However, there is again a
potential issue with this approach, as leaving the probability of the
transformation unconstrained effectively allows for conditioning
on exponentially unlikely events, which then makes possible
transformations that are conventionally known to be
unachievable26. Such a phenomenon happens when the overall
probability of success pn becomes vanishingly small. In order to
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exclude such unphysical protocols which cannot be implemented in
practice, it thus becomes necessary to carefully constrain the suc-
cess probability.

Our approach will then aim to find a middle ground: we will
quantify rates in a way that only counts the number of transformed
states, but we will explicitly forbid the possibility of the success
probability becoming unphysically small. Specifically, to ensure that
any considered protocol remains practically realisable, we will assume
that the conversion probability is bounded away from zero. We thus
consider probabilistic transformation rates with non-vanishing prob-
ability, rp>0(ρ→ω), defined as

rp>0ðρ ! ωÞ :¼ sup
ðEnÞn

(
r

����� En 2 O,

lim
n!1

F
Enðρ�nÞ

Tr Enðρ�nÞ ,ω
�brnc

� �
= 1,

lim inf
n!1

TrEnðρ�nÞ>0
)
,

ð1Þ

where F denotes fidelity. We stress that this imposes a strong restric-
tion on the allowed protocols, as the overall probability of success
must remain larger than a positive constant, even in the asymptotic
limit where the number of transformed copies grows to infinity. In
short, the numberof copies ofρ thatneed tobemanipulated at once to
obtain m copies of ω is asymptotically n = m/rp >0(ρ→ω), while the
total number of copies of ω that need to be generated is that number
times a constant overhead.

To furthermotivate our choice of definitionof a probabilistic rate,
let us compare it with the two deterministic rates introduced in this
section. The fact that the deterministic transformation rate rp= 1 is the
smallest of the three types is clear from the definition. However, there
is no obvious relation between the strong converse rate and the
probabilistic one. We can nevertheless show that the rates actually
form a hierarchy:

rp= 1ðρ ! ωÞ ≤ rp>0ðρ ! ωÞ ≤ ryp= 1ðρ ! ωÞ: ð2Þ

This demonstrates in particular that the probabilistic rate rp>0 is well
behaved, as it does not exceed conventional limitations imposed by
strong converse rates. It also naturally fits into the information-
theoretic framework for asymptotic transformations and may even
provide a tighter restrictionondeterministic transformation rates than
those coming from strong converse bounds.

Free operations and reversibility
The asymptotic transformation rates depend heavily on the choice
of the free operations O. Typically, practically relevant choices of
free operations are subsets of resource–non-generating (RNG)
operations, defined as those maps E (possibly probabilistic ones)
that satisfy EðσÞ

Tr EðσÞ 2 F for all σ 2 F. Here, F stands for the set of free
(resourceless) states of the given theory. The definition of RNG
operations then means that these maps are not allowed to generate
any resources for free, which is a very basic and undemanding
assumption to make.

The framework of refs. 9,10,16 studied the manipulation of
quantum resources under transformations which slightly relax the
above constraint, imposing instead that small amounts of resources
may be generated, as long as they vanish asymptotically. Specifically,
let us consider the resource measure known as generalised (global)
robustness Rg

F, defined as27

Rg
FðρÞ :¼ inf λ 2 R+

ρ + λω
1 + λ

���� 2 F,ω 2 D
� �

, ð3Þ

where D denotes the set of all states. The δ-approximately
resource–non-generating operations ORNGδ

are then all maps E such
that

Rg
F

EðσÞ
Tr EðσÞ

� �
≤ δ 8σ 2 F: ð4Þ

Finally, the transformation rates under asymptotically resource–non-
generating maps OARNG, whether deterministic or probabilistic, are
defined as those where each transformation ρ⊗n→ω⊗⌊rn⌋ is realised by a
δn-approximately RNG operation, with δn→0 in the limit as n→∞. We
will denote deterministic rates under suchoperations as rp= 1ðρ �!

ARNG
ωÞ,

and analogously for the probabilistic rates rp >0.
The main reason to study asymptotically RNG operations is their

conjectured reversibility9,10,16. Specifically, the claim is that the deter-
ministic rates always equal

rp= 1 ρ �!
ARNG

ω

� �
=
? D1

F ðρÞ
D1
F ðωÞ , ð5Þ

where D1
F denotes the regularised relative entropy of a resource,

D1
F ðρÞ :¼ lim

n!1
1
n
inf
σ2F

Dðρ�n k σnÞ ð6Þ

with Dðρ k σÞ = Trρðlogρ� log σÞ being the quantum relative entropy.
This would precisely identify D1

F as the unique resource measure in the
asymptotic setting. However, this conjecture relied crucially on the
generalised quantumStein’s lemma19, in whose proof a gapwas recently
discovered17. Hence, the statement in Eq. (5) is not known to be true17.

Onemay alsowonderwhether there areother possible candidates
for operations that could lead to reversibility. This is especially rele-
vant since the asymptotically resource non-generatingmapsOARNG are
defined in an axiomatic way, and it may be appealing to study smaller
classes of transformations constructed through more practically-
minded considerations.However, suchapossibility has been ruledout:
in the context of deterministic transformations, essentially all sets of
operations smaller than OARNG have been shown to lead to an irre-
versible theory of entanglement14. Importantly, the choice of the
measure Rg

F in the definition of OARNG is crucial, and even a small
change of the resource quantifier can preclude reversibility. What this
means is that any reversible theory of entanglement must actually
generate exponentially large amounts of entanglement according to
certain measures14. But even such entanglement generation is not
enough on its own: if one requires the considered transformations to
also be ‘dually’ resource non-generating (i.e., in the Heisenberg pic-
ture), then reversibility is impossible, even if one permits generating
entanglement akin to OARNG

28. On the other hand, choosing more
permissive types of operations, such as ones where the generated
resources are quantified with the relative entropy D1

F , may be too lax
of a constraint, as such a theory trivialises by allowing for the distilla-
tion of unbounded amounts of entanglement10. Altogether, this pro-
vides a strong motivation to study reversibility precisely under the
classOARNG, as it constitutes a ‘Goldilocks’ set of operations that may
allow for reversible manipulation while maintaining reasonable
restrictions on the allowed transformations.

Probabilistic reversibility
The conjectured resource reversibility (Eq. (5)) was formulated in a
remarkably generalmanner. The original claimwasmeant to apply not
only to entanglement, but also tomore general quantum resources, as
long as the set F satisfies a number of mild assumptions — notably, it
mustbe convex, and itmust be such that the tensor product of any two
free states remains free, as does their partial trace16,19. These are weak
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assumptions obeyed by the vast majority of theories of practical
interest.

Our main result is a general probabilistic reversibility of quantum
resources under the exact same assumptions.

Theorem 1. For all quantum states ρ and ω, the transformation rate
with non-vanishing probability of success under asymptotically
resource–non-generating operations satisfies

rp > 0ðρ �!
ARNG

ωÞ = D1
F ðρÞ

D1
F ðωÞ : ð7Þ

This implies in particular a general reversibility of state transforma-

tions: rp > 0ðρ �!
ARNG

ωÞ = rp > 0ðρ �!
ARNG

ωÞ�1 for all pairs of states.

Both the converse and the achievability parts of this result make
use of the asymptotic equipartition property for the generalised
robustness,whichwas shownbyBrandãoandPlenio (Proposition II.1 in
ref. 19) and independently by Datta (Theorem 1 in ref. 29). This prop-
erty says that, under a suitable ‘smoothing’, the generalised robustness
Rg
F converges asymptotically to the regularised relative entropy of the

resource:

lim
ε!0

lim sup
n!1

1
n

min
1
2kωn�ω�brnck1 ≤ ε

log
�
1 +Rg

FðωnÞ
�
= r D1

F ðωÞ: ð8Þ

Importantly, this finding directly leads to the strong converse of the
generalised quantum Stein’s lemma (Corollary III.3 in ref. 19), but it
does not appear to be enough to deduce themain achievability part of
the lemma17, which underlies the previous reversibility conjectures.
Our main contribution here is to show that the strong converse part is
sufficient to show the reversibility of quantum resources, as long as
probabilistic protocols are allowed.

Proof sketch of Theorem 1. The converse direction relies on the
strong monotonicity properties of the generalised robustness Rg

F as
well as the aforementioned asymptotic equipartition property (8). This
follows a related approach that was recently used to study post-
selected probabilistic transformation rates26, and here we extend it to
asymptotically resource–non-generating transformations ARNG. A
point of note is that standard techniques for upper bounding trans-
formations rates, based on the asymptotic continuity of the relative
entropy1,30,31, do not seem to be sufficient to establish a converse
bound on probabilistic rates (see Appendix H in ref. 26). Our approach
requires the use of a different toolset that explicitly makes use of the
features of Rg

F.
For the achievability part of the theorem, we use the exact cal-

culation of the strong converse exponent in the generalised quantum
Stein’s lemma19. The lemma is concerned with the distinguishability of
many copies of a quantum state ρ⊗n against all states in the set of the
free states F. The result of ref. 19 then says that, for every resource
theory, there exists a sequence of measurement operators ðAnÞn such
that Tr Anρ

�n
	 


≥ 1� δn and

� 1
n
log sup

σ2F
TrðAnσÞ �!

n!1
D1
F ðρÞ: ð9Þ

Here, δn denotes the probability of incorrectly guessing that ρ⊗n is a
free state, while the quantity in Eq. (9) characterises the opposite
error of incorrectly guessing that a free state is ρ⊗n. The issue here is
that the proof of ref. 19, and hence also Eq. (9), is only valid in the
strong converse regime: thismeans that the error δn is not guaranteed
to vanish, but it may actually tend to a constant arbitrarily close to 1.
This prevents a direct application of previous deterministic results16.

What we do instead is define probabilistic operations of the form

EnðτÞ :¼ TrðAnτÞωn +μn Tr½ð1� AnÞτ�πn, ð10Þ

where: ωn are states appearing in (8) which are εn-close to the target
states ω� nD1

F ðρÞ=D1
F ðωÞb c, πn are some suitably chosen states, and

μn∈ [0, 1] are parameters to be fixed.
The basic idea is then that by decreasing μn, we can make the

output of this operation closer to ωn, even when TrðAnρ
�nÞ↛1. How-

ever, one cannot just decrease μn arbitrarily, as the maps En must be
ensured to be free operations. Our crucial finding is that μn can always
be chosen so that μn �!n!1

0 while the operations En generate asymp-
totically vanishing amounts of resources and the overall probability of
success does not vanish. This means precisely that the sequence ðEnÞn
is an ARNG protocol that realises the desired conversion.

The complete proof of Theorem 1 can be found in Section II of the
Supplementary Information.

Optimality of ARNG transformations
To provide a stronger motivation for the choice of asymptotically
resource–non-generating operations in the study of reversible trans-
formations, we can show that this set of operations is essentially the
smallest possible: more restrictive types of operations cannot lead to
reversibility in general, even under probabilistic transformations.

One natural way to constrain the allowed resource transforma-
tions is to forbid resource generation — that is, instead of asymptoti-
cally resource–non-generating maps, consider strictly resource-
non–generating ones. An even more fine-grained restriction can be
obtained by allowing for approximate resource generation, but
choosing a more restrictive resource measure with which to quantify
the generated resources. To be precise, let us consider a modified
notion of δ-approximately RNG transformations that we will call
ORNG,δ,s. They are defined in exactly the same manner as ARNG rates,
but instead of constraining the generalised robustness Rg

F as in Eq. (4),
we impose that

Rs
F

EðσÞ
Tr EðσÞ

� �
≤ δ 8σ 2 F, ð11Þ

where Rs
F denotes the standard robustness27

Rs
FðρÞ :¼ inf λ 2 R+

ρ + λσ
1 + λ

���� 2 F, σ 2 F
� �

: ð12Þ

This measure is very similar to the generalised robustness of Eq. (3),
but the state σ is now required to be free; because of this, it holds that
Rs
FðρÞ≥Rg

FðρÞ in general, making the constraint in (11) potentially more
restrictive than before. We stress that strictly resource–non-generat-
ing transformationsORNG are a subset of ORNG,δ,s, so all irreversibility
results shown for the latter apply also to the former.

We can use this to define modified transformation rates

r
�
ρ �!

ARNG,s
ω
�

as those realised under ORNG,δn,s
transformations with

δn→0 as n→∞.

By extending the methods that we used previously in the study of
deterministic irreversibility14, we can show the following.

Theorem2. Even in the probabilistic setting, general reversibility is not
possible under operations that do not generate any resources or ones
that only generate asymptotically vanishing amounts of resources
according to the standard robustness. Specifically, in the resource
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theory of entanglement there exist states ρ,ω such that

rp > 0

�
ρ �!

ARNG,s
ω
�
< rp>0

�
ω �!

ARNG,s
ρ
��1

: ð13Þ

Together with our achievability result in Theorem 1, this provides
a complete characterisation of the landscape of reversibility in the
probabilistic setting: general reversibility is indeed achievable with the
asymptotically resource–non-generating transformations OARNG, and
not only is it impossible under operations that are not allowed to
create any resources, but even a slightly more restrictive choice of
operations obtained by the change of the underlying resource mea-
sure fromRg

F toRs
F precludes reversibility in general quantum resource

theories.
Adetailedderivationof Theorem2, togetherwith technical details

and extensions, can be found in Section IV of the Supplementary
Information.

Entanglement distillation
Two of the most important problems in the understanding of asymp-
totic entanglement manipulation concern the tasks of extracting
‘entanglement bits’ (ebits), i.e. copies of the maximally entangled two-
qubit singlet state Φ+, and the reverse task of converting ebits into
general noisy states. The rates of these two tasks are known as,
respectively, the distillable entanglement Ex

d,OðρÞ :¼ rxðρ ! Φ + Þ and
the entanglement cost Ex

c,OðρÞ :¼ rxðΦ + ! ρÞ�1, where x stands for
either p = 1, p > 0, or the strong converse rate p = 1, †. Although exact
expressions can be obtained for the entanglement cost in various
settings10,32,33, the understanding of distillable entanglement appears
to be an extremely difficult problem that has so far resisted most
attempts at a conclusive solution, except in some special cases28,34. Of
note is the conjectured result that10,17

Ep = 1
d,NE ðρÞ =

?
D1
SEPðρÞ, ð14Þ

whereNE stands for the class of non-entangling operations (equivalent
to RNGmaps in this theory) andD1

SEP is the regularised relative entropy
of entanglement. Establishing this result would recover the determi-
nistic reversibility of entanglement theory (that is, Eq. (5))10,17. We note
that distillation rates under NE operations are equal to rates under
asymptotically non-entangling operations (ANE)14, which correspond
to OARNG in the notation of this work.

We now introduce a close relation that connects entanglement
distillation transformations in the probabilistic and strong converse
regimes. Namely, we show that one can always improve on the trans-
formation error of a distillation protocol by sacrificing some success
probability, and vice versa. What this means in particular is that every
rate that can be achieved in the deterministic strong converse regime
(i.e. with a possibly large error ε < 1) can also be achieved probabil-
istically with error going to zero. Crucially, to construct the new,
modified protocol from the original one we only need to employ local
operations and classical communication (LOCC), which are the stan-
dard class of free operations in entanglement theory,meaning that the
result applies to essentially all different types of operations that
extend LOCC.

Theorem 3. Let O be any class of operations which is closed under
compositionwith LOCC, i.e. such that E 2 O,F 2 LOCC ) F � E 2 O.
This includes in particular the set LOCC itself. Then, for all states ρ,

Ep = 1,y
d,O ðρÞ = Ep>0

d,O ðρÞ: ð15Þ

For the case of (asymptotically) non-entangling operations, we have
that

Ep = 1,y
d,ðAÞNEðρÞ = Ep>0

d,ðAÞNEðρÞ = D1
SEPðρÞ: ð16Þ

Proof sketch. Assume that two spatially separated parties, con-
ventionally called Alice and Bob, share n copies of an entangled state
ρAB. Consider any sequence of protocols which allows them to distill
entanglement from such states at a rate r with with error εn �!n!1

ε and
probability pn �!n!1

p (this includes the deterministic strong converse
case where pn = 1).

After performing the considereddistillation protocol, they share a
many-copy state τA0B0 which approximates Φ� rnb c

+ . What they can do
now is to sacrifice a fixed number k of their qubit pairs in order to
perform a state discrimination protocol: by testing whether the k-copy
subsystem is in the stateΦ�k

+ and discarding their whole state when it
is not, they can probabilistically bring the state of the rest of their
shared system closer to Φ� rnb c�k

+ . We show that this can be done by a
simple LOCC protocol wherein Alice and Bob perform measurements
in the computational basis and compare their outcomes. Since k is
arbitrary here, Alice and Bob can perform the modified protocol
without reducing the asymptotic transformation rate. Conversely, in a
similar manner they can also increase their probability of success by
sacrificing some transformation fidelity. By deriving the exact condi-
tions for when distillation protocols can be refashioned in such a away,
we observe that another sequence of entanglement distillation pro-
tocols with error ε0n �!n!1

ε0 and probability p0
n �!n!1

p0 can exist if and
only if

p ð1� εÞ = p0 ð1� ε0Þ: ð17Þ

This directly implies Eq. (15).
To see Eq. (16), it suffices to combine Theorem 1 with the known

result that D1
SEPðρÞ is a strong converse rate for distillation under

ANE10,35.
We have already shown the probabilistic reversibility of entan-

glement theory in Theorem 1, so let us now discuss the deterministic
case. Here, reversibility is fully equivalent to the question of whether
Ep = 1
d,O ðρÞ = Ep = 1

c,O ðρÞ holds for all quantum states, which has been con-
jectured to be true for the class of asymptotically non-entangling
operations10. Combining our results with the known findings of Bran-
dão and Plenio10, we have that

Ep>0
d,ANEðρÞ =

Thm: 3
Ep = 1,y
d,ANE ðρÞ =

½10, 17�
Ep = 1
c,ANEðρÞ

=
½10�

D1
SEPðρÞ =

Thm: 1
Ep >0
c,ANE ðρÞ:

ð18Þ

The missing link is thus the question if Ep = 1
d,ANEðρÞ =

?
Ep>0
d,ANEðρÞ, or the

equivalent17 question ofwhether Ep = 1,y
c,ANE ðρÞ =

?
Ep>0
c,ANE ðρÞ. Showing either

of these statements would complete the proof of the deterministic
reversibility of quantum entanglement under asymptotically non-
entangling operations. An interesting consequenceof the above is that
establishing the equivalent of Theorem 3 for entanglement dilution
would be sufficient to recover a fully reversible entanglement theory.

We remark that other quantum resource theories may not be
amenable to a characterisation in terms of distillation and dilution
because they may not possess a suitably well-behaved unit of a
resource resembling the maximally entangled state16,36,37. Nonetheless,
reversibility in all resource theories can be understood as in our
Theorem 1.
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Discussion
We have shown that the conjectured reversibility of general quantum
resources can be recovered, albeit in a probabilistic manner that
employs probabilistic protocols with non-vanishing probability of
success. This allowed us to identify the setting of probabilistic
resource transformations as one that is completely governed by a
unique entropic quantity — the regularised relative entropy — thus
solidifying the parallels between thermodynamics and diverse types of
quantum resources. We further showed that the choice of asymptoti-
cally resource–non-generating operations is optimal in this setting, in
the sense that all smaller classes of probabilistic operations are
necessarily irreversible, providing a strong no-go restriction on how
reversibility could be achieved.

Although this precise characterisation of asymptotic rates is
appealing, our setting departs from the original reversibility con-
jectures of refs. 10,16, since it considers transformations that are only
required to be achieved with some probability. This may not be
enough to ensure the existence of a repeatable, reversible transfor-
mation cycle in practice. Nevertheless, in view of the close relations
between probabilistic and deterministic rates (Eq. (2)) we regard our
results as evidence that reversibility could indeed be recovered also in
the deterministic setting. This is further motivated by the fact that, in
many quantum information processing tasks, strong converse rates
actually coincide with the optimal achievable rates38–45, meaning that
rp = 1 = ryp = 1 and the hierarchy in Eq. (2) collapses. However, a com-
plete proof of this fact in the setting of resourcemanipulation remains
elusive, and it is still possible that one of the inequalities in Eq. (2) may
be strict for some states, thus ruling out deterministic reversibility. We
hope that our results stimulate further research in this direction,
leading to an eventual resolution of the open questions that cloud the
understanding of asymptotic resource manipulation18.
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