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Distillable entanglement under dually non-
entangling operations

Ludovico Lami 1,2,3 & Bartosz Regula 4

Computing the exact rate at which entanglement can be distilled from noisy
quantum states is one of the longest-standing questions in quantum infor-
mation. We give an exact solution for entanglement distillation under the set
of dually non-entangling (DNE) operations—a relaxation of the typically con-
sidered local operations and classical communication, comprising all channels
which preserve the sets of separable states and measurements. We show that
the DNE distillable entanglement coincides with a modified version of the
regularised relative entropy of entanglement in which the arguments are
measured with a separable measurement. Ours is only the second known
regularised formula for the distillable entanglement under any class of free
operations in entanglement theory, after that given by Devetak andWinter for
(one-way) local operations and classical communication. An immediate con-
sequence of our finding is that, under DNE, entanglement can be distilled from
any entangled state. As our second main result, we construct a general upper
bound on the DNE distillable entanglement, using which we prove that the
separably measured relative entropy of entanglement can be strictly smaller
than the regularisation of the standard relative entropy of entanglement,
solving an open problem posed by Li and Winter. Finally, we study also the
reverse task of entanglement dilution and show that the restriction to DNE
operations does not change the entanglement cost when compared with the
larger class of non-entangling operations. This implies a strong form of irre-
versiblility of entanglement theory under DNE operations: even when
asymptotically vanishing amounts of entanglement may be generated,
entangled states cannot be converted reversibly.

Entanglement distillation is poised to be one of the fundamental
primitives of the emerging field of quantum technologies1–3. Its goal
is to transformmany copies of a noisy entangled state ρAB emitted by
some source into (a smaller number of) ebits, i.e., perfect units of
entanglement, that can then be used as fuel in a variety of quantum
protocols, e.g., teleportation4, dense coding5, or quantum key
distribution6,7, as well as to demonstrate violations of Bell

inequalities8. To perform this transformation, one is allowed to use
quantumoperations taken from a class of free operationsF , assumed
to comprise all quantum channels that are easy to implement on our
quantum devices with the resources at our disposal. The funda-
mental figure of merit that characterises the ultimate efficiency of
entanglement distillation on ρAB is the distillable entanglement under
F , denoted by Ed,F ðρABÞ. This depends critically both on the input

Received: 5 September 2023

Accepted: 5 November 2024

Check for updates

1QuSoft, Amsterdam, the Netherlands. 2Korteweg–de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, the Netherlands. 3Institute for
Theoretical Physics, University of Amsterdam, Amsterdam, the Netherlands. 4Mathematical Quantum Information RIKEN Hakubi Research Team, RIKEN
Cluster for Pioneering Research (CPR) and RIKEN Center for Quantum Computing (RQC), Wako, Saitama, Japan. e-mail: ludovico.lami@gmail.com;
bartosz.regula@gmail.com

Nature Communications |        (2024) 15:10120 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3290-3557
http://orcid.org/0000-0003-3290-3557
http://orcid.org/0000-0003-3290-3557
http://orcid.org/0000-0003-3290-3557
http://orcid.org/0000-0003-3290-3557
http://orcid.org/0000-0001-7225-071X
http://orcid.org/0000-0001-7225-071X
http://orcid.org/0000-0001-7225-071X
http://orcid.org/0000-0001-7225-071X
http://orcid.org/0000-0001-7225-071X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54201-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54201-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54201-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54201-5&domain=pdf
mailto:ludovico.lami@gmail.com
mailto:bartosz.regula@gmail.com
www.nature.com/naturecommunications


state ρAB and on the set of free operationsF with which distillation is
carried out.

Historically, the first class of free operations to be widely studied
was that of local operations and classical communication (LOCC).
LOCCs are the most general operations that can be performed by
spatially separated parties that are bound to the rules of quantum
mechanics and can communicate only classically9. In spite of their
operational importance, LOCCs are exceedingly difficult to char-
acterise mathematically, and as a consequence we currently do not
possess any formula to compute the LOCCdistillable entanglement on
arbitrary states, or even decide when it is zero and when it is not10,11.
This is to be contrasted with the fact that we do possess a formula for
the LOCC entanglement cost, which is given by the regularised
entanglement of formation12.

To bypass this problem, in recent years there has been an
increasing interest in characterising entanglement manipulation
under classes of free operations that approximate LOCCs. There are at
least two valid reasons to pursue this goal, besides the obvious one
that simpler classes of free operations offer an ideal test-bed to
improve our understanding of entanglement manipulation. First,
in this way one can obtain lower and upper bounds on the LOCC
distillable entanglement, because if F 1 � LOCC � F 2 then
Ed,F 1

ðρABÞ≤ Ed, LOCCðρABÞ≤ Ed,F 2
ðρABÞ. Several of the best known

bounds on the distillable entanglement can be seen as stemming from
this approach. For example, the restriction to one-way LOCCs yields
thehashing lower bound [ref. 13, Theorem13],while going to the larger
set of PPT operations results in the upper bounds via the negativity14,15

and the Rains bound16. Nevertheless, even under simpler classes of
operations, the ultimate capabilities of entanglement manipulation—
and in particular the exact value of distillable entanglement—are not
known, with the sole exception of one-way LOCC13.

But there is also another, more fundamental reason to go beyond
the LOCC paradigm. Since the early days of entanglement theory, a
whole line of research17–19 has focused on the conceptually striking
parallels between the laws of entanglement manipulation, which gov-
ern the interconversion of pure andmixed entanglement, and those of
thermodynamics, which govern the interconversion of work and heat.
In building a ‘thermodynamic theory of entanglement’, a top-down,
axiomatic approach is somewhat preferable to the bottom-up
approach that leads to the definition of LOCC, and arguably closer
in spirit to the original founding principles of thermodynamics20–22.
This approach has been already quite fruitful, shedding light on
the fundamental question of (ir)reversibility of entanglement
manipulation23–26, but many of the issues it raises remain unresolved.

In this work, we focus on a particular superset of LOCC, namely
the dually non-entangling (DNE) operations.DNEoperations, originally
introduced by Chitambar et al.27, can be easily understood from a
rather natural axiomatic perspective as those that preserve separ-
ability (i.e., absence of entanglement) of states when seen in the
Schrödinger picture and of measurements when seen in the Heisen-
berg picture. An important point is that DNE protocols are more
restricted than some other commonly employed operations such as
non-entangling (NE) maps23,24, which means that they provide a closer
approximation to LOCCs and can potentially yield improved bounds
on their operational processing power. Here we completely char-
acterise asymptotic entanglement manipulation under DNE opera-
tions, connecting it with the important operational task of
entanglement testing, and revealing new features of phenomena such
as entanglement irreversibility and bound entanglement.

Results
Our contribution
Our first main result is a clean formula for the DNE distillable entan-
glement (Theorem 1), which can be expressed as a regularised separ-
ably measured divergence DSEP,1ð�kSÞ — a modified version of the

relative entropy of entanglement D1ð�kSÞ28,29 that was originally
introduced by Piani in a seminal work30 and has recently found some
applications26,31–33. We dub it the Piani relative entropy of entangle-
ment. To compute it, one calculates the distance of a given state from
the set of separable states asmeasured by a form of measured relative
entropy that involves an optimisation over separable measurements
only. In spite of the seemingly more complicated definition, the
resulting quantity enjoys a plethora of desirable properties, some of
which, such as strong super-additivity [ref. 30, Theorem 2], are often
very useful30,34,35 but do not hold for the standard relative entropy of
entanglement36. As a by-product of our result, many of these proper-
ties are inherited by the DNE distillable entanglement. Perhaps the
most important one is the faithfulness — since the Piani relative
entropy is non-zero for all entangled states, this immediately implies
that the phenomenon of bound entanglement does not exist under
DNE operations.

Our result represents one of the few instances where the distill-
able entanglement under some relevant class of free operations can be
calculated, albeit in terms of some regularised expression. Regular-
isation here means that one needs to understand the limiting beha-
viour of the given quantity when acting on many copies of a quantum
state. The necessity for such a procedure is a consequence of the fact
that operational quantities encountered in quantum information are
typically not additive36–41, precluding the validity of non-regularised
(‘single-letter’) expressions. We should remark here that while reg-
ularised formulas do not allow for a straightforward calculation
because of the ubiquity of non-additivity phenomena in quantum
information, they are nevertheless amenable to theoretical investiga-
tion, which is the reason why many cornerstone results in quantum
information theory, such as the Lloyd–Shor–Devetak theorem42–44, or
the Holevo–Schumacher–Westmoreland theorem45,46, are proofs of
regularised formulas. Besides our result, the only other known formula
for distillable entanglement of any kind is the result of Devetak
and Winter13, where a regularised expression is found for the rate of
distillation under local operations assisted by one- or two-way classical
communication; however, the expression there involves complex
optimisation problems, meaning that its computability and
applicability is questionable. A regularised expression has also
been conjectured for the distillable entanglement under the class of
non-entangling operations24,26 in terms of D1ð�kSÞ — this conjecture
being equivalent to the notorious generalised quantum Stein’s
lemma47,48.

To complement our study of entanglement distillation, we also
provide a comprehensive characterisation of the reverse task of
entanglement dilution under DNE operations. The relevant quantity
here is the entanglement cost Ec,F ðρABÞ, that is, the rate at which
maximally entangled states are needed in order to produce a given
noisy state.We show that the entanglement cost underDNEoperations
is the same as the one under the larger class of non-entangling
operations. On the one hand, this means that it suffices to employ the
smaller and more restrictive set of DNE operations to achieve optimal
dilution rates. On the other hand, the result allows us to use a number
of previously established findings in the study of NE operations24,25 to
directly constrain or even exactly compute the DNE entanglement
cost. We will see this to have crucial consequences.

One of the most important application of the axiomatic approa-
ches to entanglement theory has been the study of entanglement
reversibility23–26, namely the question of whether the rate of entan-
glement distillation Ed,F ðρABÞ equals the entanglement cost Ec,F ðρABÞ.
The fundamental consequence of such reversibility would the estab-
lishment of a ‘second law’ of entanglement: asymptotic entanglement
transformations would be completely governed by a single function,
playing a role analogous to entropy in thermodynamics. So far,
reversibility has not been shown under any class of quantum
channels26, but there is a strong contender that has been conjectured
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to yield a reversible entanglement theory: namely, asymptotically non-
entangling (ANE) maps23,24. Although entanglement is known to be
irreversible under non-entangling channels25, the entanglement
manipulation rates can be increased by allowing small amounts of
entanglement (according to some appropriate entanglement mea-
sure) to be generated in the process, as long as they vanish asympto-
tically. Using our characterisation of entanglement dilution under DNE
maps, we can show that the entanglement cost under DNE maps
enhanced by such asymptotic entanglement generation (which we
may refer to as asymptotically dually non-entangling maps, ADNE)
equals the corresponding entanglement cost under ANE maps (Theo-
rem 2). But the latter is already known24: it is given exactly by the
regularised relative entropy of entanglement D1ð�kSÞ.

We thus obtain a complete understanding of the theory of
entanglement manipulation under asymptotically dually non-
entangling channels: the distillable entanglement is given by the reg-
ularised Piani relative entropy DSEP,1ð�kSÞ, while the entanglement
cost by the standard relative entropy of entanglement D1ð�kSÞ. The
question of reversibility of entanglement under ADNE operations is
thus reduced to the question ofwhether there exists a gapbetween the
quantitiesD1ð�kSÞ andDSEP,1ð�kSÞ. A very closely relatedquestionwas
previously asked by Li and Winter [ref. 32, Figure 1]. With our third
main result (Theorem 3) we solve both of these problems, proving that
the antisymmetric state αd satisfies DSEP,1ðαd k SÞ<D1ðαd k SÞ for
large enough d, namely d ≥ 13. Our results thus directly prove that
entanglementmanipulation is irreversible under DNE operations, even
if asymptotic entanglement generation is allowed. Such a strong form
of irreversibility contrasts with the conjectured reversible framework
under ANE operations24,26 and shows that the restriction to DNE
operations carries strong physical consequences. Our result also
solves the open problem by Li and Winter32 and further reinforces the
fame of the antisymmetric state as the ‘universal counterexample’ in
quantum entanglement theory49.

Notation
A quantum state ρAB on a finite-dimensional bipartite quantum system
AB is called separable if it can bewritten asρAB =

P
xpx α

A
x � βB

x , and it is
called entangled otherwise. We denote the set of separable states on
AB by SðA : BÞ, or simply S if there is no ambiguity concerning the
underlying system. We will also be interested in the set of separable
measurements, denoted by SEPðA : BÞ or simply SEP. It comprises all
positive operator-valued measures (POVM) ðExÞx such that Ex 2
coneðSÞ for all x, where coneðSÞ denotes the cone of un-normalised
separable operators. Notably, all LOCC measurements are separable,
but the converse is not true9.

We can quantify the entanglement of a state ρAB by calculating its
distance from the set of separable states as measured by some quan-
tum divergence. The twomain choices of quantum divergence we will
be concerned with here are the quantum (Umegaki) relative entropy50,
given by Dðρ k σÞ :=Tr ρ log2ρ� log2σ

� �� �
, and the Piani relative

entropy, which is defined for two arbitrary bipartite states ρ = ρAB and
σ = σAB by

30

DSEPðρkσÞ := sup
ðEx Þx 2SEP

X
x

Tr½ρEx � log2
Tr½Exρ�
Tr½Exσ�

: ð1Þ

Yet another possible choice is the max-relative entropy, defined by
Dmaxðρ k σÞ := minfλ : ρ≤ 2λσg. The relative entropy of entanglement,
the Piani relative entropy of entanglement, and themax-relative entropy
of entanglement are then defined by28–30

DðρkSÞ := min
σ2S

DðρkσÞ, D=D, DSEP, Dmax: ð2Þ

In quantum information one often looks at the asymptotic limit
of many copies, which captures the ultimate limitations to which

quantum phenomena are subjected, and is reminiscent of the ther-
modynamic limit in statistical physics. Doing so yields the regularised
entanglement measures

D1ðρkSÞ := lim
n!1

1
n
D ρ�n k Sn

� �
, D =D, DSEP, Dmax: ð3Þ

where Sn =SðAn : BnÞ. Because of the hierarchical relations existing
between the corresponding divergences, it holds that

DSEPðρkSÞ≤DðρkSÞ≤DmaxðρkSÞ, ð4Þ

and analogously for the regularised quantities. These three entangle-
ment measures have however remarkably different features. While
Dðρ k SÞ and Dmaxðρ k SÞ are sub-additive on several independent
systems, DSEPðρ k SÞ is not only super-additive but actually strongly
super-additive, meaning that [ref. 30, Theorem 2]

DSEP ρAA0BB0 k SðAA0 : BB0Þ� �
≥DSEP ρAB k SðA : BÞ� �

+DSEP ρA0B0 k SðA0 : B0Þ� � ð5Þ

for all (possibly correlated) four-partite states ρAA0 :BB0 .
For a given class of free operationsF and some bipartite state ρAB,

the corresponding distillable entanglement Ed,F ðρABÞ canbe defined as
themaximumnumber of ebits that can be extracted per copy of ρAB, in
the asymptotic limitwheremany copies are available, using operations
from F while making a vanishingly small error. Although F =LOCC is
the traditional choice2, for the aforementioned reasons we are inter-
ested here in the larger class of dually non-entangling operations,
previously introduced by Chitambar et al.27 This can be justified axio-
matically as follows. Any free operation Λ=ΛAB!A0B0 that defines a valid
entanglement manipulation protocol should transform separable
states into separable states, i.e., it should not inject additional entan-
glement into the system. Operations that satisfy this constraint are
called non-entangling (NE)23,25. While this appropriately captures what
should happen in the Schrödinger picture where Λ acts on states, we
can also look at the Heisenberg picture, where Λ†, the adjoint defined
by TrXΛðY Þ=TrΛyðX ÞY , acts on measurement operators. If we also
assume that pre-processing by Λ should not turn a separable mea-
surement into a non-separable one, we obtain the set of dually non-
entangling (DNE) operations, defined by the conditions27

ΛðσABÞ 2 SðA0 : B0Þ 8σAB 2 SðA : BÞ,
ΛyðEA0B0 Þ 2 cone SðA : BÞð Þ 8 EA0B0 2 cone SðA0 : B0Þ� �

:
ð6Þ

Generalising the concept of asymptotically non-entangling operations
(ANE) found in the framework of Brandão and Plenio23,24, we can also
consider asymptotically DNE (ADNE) operations, in which we allow the
creation of some entanglement, as long as this amount is sufficiently
small: it must vanish asymptotically according to some fixed
entanglement measure. Following Brandão and Plenio23,24, we quantify
the generated entanglement by the max-relative entropy of entangle-
ment, replacing the first line of (6) by the condition that
maxσ2SDmax ΛnðσÞ k S� �

≤ηn for the operation Λn used for entangle-
ment distillation at the n-copy level, and then requiring that
ηn�!n!10. We will denote the corresponding distillable entangle-
ment by Ed, ADNE(ρAB).

Distillable entanglement
We will now state our first main result, which establishes a regularised
formula for the distillable entanglement under (A)DNE operations.

Theorem 1. For all bipartite states ρ = ρAB, the distillable entanglement
under (asymptotically) dually non-entangling operations coincides
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with the regularised Piani relative entropy of entanglement; i.e.,

Ed, DNEðρÞ= Ed, ADNEðρÞ=DSEP,1ðρ k SÞ: ð7Þ

As a consequence, there is no bound entanglement under DNE: for any
entangled state ρ, it holds that

Ed, DNEðρÞ≥DSEPðρ k SÞ>0: ð8Þ

Before we sketch the main proof ideas, several remarks are
in order.

(I) Eq. (8) provides a faithful single-letter lower bound on the DNE
distillable entanglement of any state, and in particular, thanks to the
faithfulness of the Piani relative entropy30, it reveals that there is no
bound entanglement under DNE operations. Distillability under these
operations was previously studied in [ref. 27, Theorem 13], although a
complete proof that all entangled states are distillable was not
obtained there. Theorem 1 also provides a conceptually cleaner proof
of our previous result [ref. 26, Proposition 7], where we showed that
there is no bound entanglement under ANE operations; it suffices to
observe that sinceADNE operations are in particular ANE, we have that
Ed, ANEðρÞ≥ Ed, ADNEðρÞ= Ed, DNEðρÞ, and we just observed that the right-
hand side is non-zero for all entangled states ρ.

(II) The result of Eq. (7) shows that the choice between DNE or
ADNE operations makes no difference as far as distillation is con-
cerned. This is a priori unexpected, as ADNE operations are strictly
more powerful than DNE in general, but not entirely surprising, as the
same happens for non-entangling vs. asymptotically non-entangling
operations [ref. 25, Lemma S17]. Furthermore, in Supplementary
Note II.B we prove that even allowing ADNE operations to generate an
arbitrary sub-linear amount of entanglement (i.e., ηn = o(n)) does not
increase the distillation rate.

(III) Explicitly characterising various features of distillable entan-
glement, such as its additivity properties, is often extremely difficult.
However, equating the rate of distillation with an entropic quantity
helps mitigate such problems. Thanks to Theorem 1, the (A)DNE dis-
tillable entanglement is seen to inherit all the useful properties of the
Piani relative entropyof entanglement. Anotable example is the strong
super-additivity (5) — this feature of the (A)DNE distillable entangle-
ment, highly non-trivial to see from its definition, establishes a strong
parallel with the LOCCdistillable entanglement, which is also known to
be strongly super-additive [ref. 51, Table 3.4].

(IV) The presence of regularisation in the formula (7) may make
the quantity look dauntingly difficult to compute in practice. However,
there are severalways inwhich itmaybe efficiently estimated. First, the
super-additivity of the Piani relative contrasts with the sub-additivity of
the standard relative entropy of entanglement, which means that
obtaining lower bounds for the former is as easy as upper bounds for
the latter: it suffices to evaluate it on a single copy of a quantum state,
yielding Dðρ k SÞ≥ Ed, DNEðρÞ≥DSEPðρ k SÞ. Furthermore, we will
shortly introduce a general single-letter bound, which will often allow
for an efficient evaluation of DSEP,1ðρ k SÞ in practice.

Proof sketch of Theorem 1 and connection with hypothesis
testing
Our approach will be to first establish a tight bound on the one-shot
DNE distillable entanglement, that is, on the amount of entanglement
that can be extracted from a single copy of a state ρ. By studying the
asymptotic behaviour of this quantity when many copies of ρ are
available, we will then obtain a formula for the rate of distillation.

To this end, we will relate DNE entanglement distillation with a
seemingly different task, namely, hypothesis testing of entangled
states — or entanglement testing for short47,48. In this latter task, given
an unknownquantumstatewhich could be either the entangled state ρ

or any separable state, the goal is to performameasurement and guess
which of the two hypotheses is true. Our setting is different from that
of refs. 47,48 in that we assume that the only allowed measurements
are separable, i.e., they do not carry any entanglement themselves. In
the asymmetric setting, one assumes that the probability of mistaking
ρ for a separable state is at most ε and asks about the opposite
errorprobability. The least achievable error can thenbequantifiedby a
quantity known as the separably measured hypothesis testing relative
entropy34, which is defined as

DSEP, ε
H ðρ k σÞ := � log2 inf

ðE, 1�EÞ2SEP
Tr Eσ : TrEρ≥ 1� ε

� �
: ð9Þ

Returning to entanglement distillation, let us denote by Eð1Þ, ε
d, DNEη

ðρÞ
the number of ebits that can be distilled from a single copy of a
bipartite state ρ = ρAB, up to error ε and up to η of generated entan-
glement. Some thoughtful manipulation — the details of which we
defer to Supplementary Note II — then shows that

DSEP, ε
H ðρ k SÞ

j k
≤ Eð1Þ, ε

d, DNEη
ðρÞ

≤DSEP, ε
H ðρ k SÞ+ η+ 1:

ð10Þ

This tells us that the DNE distillable entanglement is, up to some small
terms that will asymptotically vanish, completely determined by
DSEP, ε
H . This connection between DNE entanglement distillation and

entanglement testing with separable measurements is not only one of
our main conceptual contributions, but on the more practical side it
allows us to characterise the properties of entanglement distillation by
using results from hypothesis testing. And indeed, the asymptotic
behaviour ofDSEP, ε

H was already studied in ref. 34, where it was shown
that

lim
ε!0

lim inf
n!1

1
n
DSEP, ε

H ρ�nkSn

� �
=DSEP,1ðρkSÞ: ð11Þ

By Eq. (10), the expression on the left-hand side is precisely the
asymptotic (A)DNE distillable entanglement, from which Eq. (7)
follows. Eq. (8) is then a consequence of known properties of DSEP30.
This concludes the sketch of the proof of Theorem 1. The complete
technical details of all of our proofs can be found in the Supplementary
Information.

The idea of using entanglement testing to provide bounds for
distillable entanglement has a long history29,52, but it was not until the
work of Brandão and Plenio24 that a precise equivalence between the
two concepts was established in a suitable axiomatic setting. Specifi-
cally, they showed that the rate of distillation under non-entangling
operations can be expressed using a related hypothesis testing pro-
blem as

Ed, NEðρÞ= lim
ε!0

lim inf
n!1

1
n
DALL, ε
H ρ�n k Sn

� �
, ð12Þ

where the notation ALL refers to all measurements being allowed.
There is, however, a crucial difference between Brandão and Plenio’s
work24 and ours: while the former constructed a one-to-one mapping
between non-entangling protocols and global entanglement tests, the
proof of our Theorem 1, and in particular that of Eq. (10), shows that
DNE distillation protocols — including those that are not implemen-
table with LOCC — are in one-to-one correspondence with separable
entanglement tests. Our result is significant because, in practice,
separable measurements are easier to implement experimentally in a
distant local laboratory setting in which Alice and Bob do not have
access to unbounded quantum communication.
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Entanglement cost
It is also of interest to understand the task opposite to distillation, the
dilution of entanglement— that is, the use of ebits to produce a target
(mixed) quantum state. The rate at which this can be done is known as
the entanglement cost Ec,F ðρABÞ, and the question of reversibility of
entanglement manipulation19,23–26,53 asks whether Ed,F ðρABÞ= Ec,F ðρABÞ
holds for all states under the given class of free operations F .

Our second main result establishes an equivalence between (A)
DNE and the larger class of (A)NE operations in entanglement dilution,
showing that any dilution task that could be achieved with Brandão
and Plenio’s (A)NE operations24,25 can also be accomplished with the
more axiomatically meaningful (A)DNE operations.

Theorem2. For all bipartite statesρ=ρAB, the entanglement cost under
(asymptotically) dually non-entangling operations coincides with the
corresponding entanglement cost under (asymptotically) non-
entangling operations:

Ec, DNEðρÞ= Ec, NEðρÞ, ð13Þ

Ec, ADNEðρÞ= Ec, ANEðρÞ=D1ðρkSÞ: ð14Þ

The last equality in (14) comes from the known result24 that the
ANE entanglement cost of a state ρ is given by the regularised relative
entropy of entanglement D1ðρ k SÞ. It was also recently shown that
Ec, NEðρÞ>D1ðρ k SÞ in general25, so a similar equivalence cannot hold
for DNE operations without asymptotic entanglement generation.

Theorems 1 and 2 together show that the asymptotic properties of
entanglement manipulation under ADNE operations are governed by
two entropic quantities: the Piani relative entropy DSEP,1ð�kSÞ in
distillation, and the relative entropyD1ð�kSÞ in dilution. This provides a
direct motivation for the question: is there actually any difference
between the two entropic quantities, or are they simply equal?

Gap with the relative entropy
To demonstrate a gap between DSEP,1ðρ k SÞ and D1ðρ k SÞ, we
introduce a simple but general single-letter upper bound for the reg-
ularised Piani relative entropy: namely,

Ed, DNEðρÞ=DSEP,1ðρ k SÞ≤ eE1
κ ðρÞ≤ eEκðρÞ, ð15Þ

where

eEκðρÞ := log2 min Tr S : �S≤ρΓ ≤ S, S 2 coneðSÞ� � ð16Þ

is a modification of an entanglement monotone Eκ studied in a dif-
ferent context by Wang and Wilde54. As before, coneðSÞ denotes here
the cone of separable operators. Any ansatz for Eq. (16) then yields an
upper bound on Ed, DNE(ρ), allowing one to estimate its value. We now
apply the bound of Eq. (15) to the so-called antisymmetric state — a
special entangled state that has been the subject of many
investigations55–57 in light of its peculiar properties, earning the name
of ‘universal counterexample’ in entanglement theory49. It is propor-
tional to the projector onto the antisymmetric subspace within the
bipartite Hilbert space Cd �Cd , thus being given by αd := 1�F

dðd�1Þ,
where F ∣ψ

�
∣ϕ
�
:= ∣ϕ

�
∣ψ
�
is the swap operator. It is (d − 1)-extendible on

either sub-system, thus it has small distillable entanglement, distillable
key, and squashed entanglement — all O(1/d)56. At the same time, its
entanglement cost and regularised relative entropy of entanglement
D1ðαd k SÞ are larger than a fixed constant independent of d56. Our
third main result states that the regularised Piani relative entropy of
entanglement DSEP,1ðαd k SÞ behaves unlike D1ðαd k SÞ and instead
goes to 0 as d → ∞, again as O(1/d). The existence of a state with this
property was left as an open problem by Li and Winter [ref. 32, Fig. 1].

Theorem 3. The antisymmetric state αd satisfies that

DSEP,1ðαd k SÞ≤ log2 1 +
2
d

	 

�!
d!1

0, ð17Þ

while D1ðαd k SÞ≥ 1
2 log2

4
3 � 0:2075 for all d. Consequently,

DSEP,1ðαd k SÞ<D1ðαd k SÞ for all d ≥ 13.
Although this might seem a purely mathematical result, we can

give it a direct physical meaning in two contexts: one, in the manip-
ulation of entanglement, and two, in quantum hypothesis testing. We
will now explain both of these interpretations in detail.

Irreversibility of entanglement manipulation
Theorems 1, 2, and 3 together imply a fundamental irreversibility of
entanglement under asymptotically dually non-entangling operations:
it holds that

Ec, ADNEðαdÞ> Ed, ADNEðαdÞ ð18Þ

for the antisymmetricWerner state with d ≥ 13. What thismeans is that
there is no hope of establishing reversibility under DNE transforma-
tions, even assisted by asymptotic entanglement generation.

This further hints at the fact that ANE might truly be the smallest
class of operations that enable reversibility of entanglement manip-
ulation, as suggested by Plenio58. The validity of this conjecture hinges
on the generalised quantum Stein’s lemma26,47, arguably one of the
main open problems in the field. Our results shed further light on this
problem, pinpointing which assumptions are key to reversibility. In a
recent work25, we showed that asymptotic entanglement generation is
necessary: allowing only non-entangling operations leads to irreversi-
bility. Here we show that the entanglement generation in itself is not
enough: one really needs the full operational power of non-entangling
operations and asymptotic entanglement generation in order to have
any hope of establishing a reversible theory of entanglement. This
teaches us something not only about entanglement, but also about the
mathematical structure of quantum resource theories: namely, that
asymptotically dually resource non-generating operations59 are in
general not enough to unlock reversibility.

Interestingly, the antisymmetric state αd can actually be shown to
be reversible under some other classes of free operations that extend
LOCC, such as so-called PPT operations60. This shows that the more
limited distillation power of (A)DNE operations has crucial operational
consequences, and (A)DNE is a useful outer approximation to LOCC
that is rather independent from other commonly employed ones
such as PPT.

We note also that recently a framework was formulated that
enables reversibility for all quantum states by allowing for the use
probabilistic ANE operations in addition to quantum channels61.
Although very closely related to the question studied here, this
requires a suitable adjustment of the definition of asymptotic rates,
and it is not directly comparable with the standard definitions of
transformation rates used in this work.

Entanglement testing with separable measurements
Recall from Eq. (11) that the Piani relative entropy DSEP,1ðρ k SÞ
exactly quantifies the asymptotic performance in hypothesis testing of
against all separable states using only separable measurements.

Already in refs. 24,47 an important conjecture was made: that
when all measurements are allowed— not just separable ones, but also
general global measurements — then the asymptotic rate of entan-
glement testing equals the regularised relative entropy of entangle-
ment D1ðρ k SÞ. Because of the connection between entanglement
testing and entanglement distillation under NE operations (Eq. (12)),
this would also show that Ed, NE ðρÞ=D1ðρ k SÞ and hence that entan-
glement is reversible under NE. This conjecture is precisely the
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generalised quantum Stein’s lemma. We have already shown a gap
between DSEP,1ðρ k SÞ and D1ðρ k SÞ, but without the generalised
quantumStein’s lemma, it is impossible to conclude if this gap extends
to the operational performance of NE and DNE or to entanglement
testing.

Fortunately, we can show that the conjectured generalised
quantum Stein’s lemma47 holds true for the state αd, implying that
Ed, NE ðαdÞ=D1ðαd k SÞ for this state. (See Supplementary Note IV.)
Together with Theorems 1 and 3, this then shows that

Ed, DNEðαdÞ< Ed, NEðαdÞ ð19Þ

for sufficiently large d. On the one hand, this demonstrates a gap in the
operational performance of the two sets of operations in entangle-
ment distillation, showing that DNE provide a strictly tighter approx-
imation to LOCC. On the other hand, it also directly shows a difference
in the performance of hypothesis testing in the two settings: in the
entanglement testing of the antisymmetric state αd, global measure-
ments can do strictly better than separable (and hence also local) ones.
This is the first known asymptotic gap of this kind.

Discussion
We have contributed to the asymptotic theory of entanglement
manipulation by exactly computing the rate at which entanglement
can be distilled from any quantum state using dually non-entangling
operations. In addition to being one of the few examples where
asymptotic rates for general quantum states can be evaluated in terms
of a single regularised quantity, this result also gives a direct opera-
tional interpretation to the Piani relative entropy of entanglement, a
known mathematical tool that had not been directly connected with
entanglementmanipulation before. We provided new insights into the
asymptotic properties of the antisymmetric state — a state that has
received significant attention due to its often unusual entanglement
properties, and whose characterisation is an important problem in
entanglement theory — by resolving an open question regarding its
distinguishability. Finally, we have shown that dually non-entangling
operations assisted by asymptotically vanishing amounts of entan-
glement can dilute entanglement at a rate given by the regularised
relative entropy of entanglement, matching the performance of the
larger class of asymptotically non-entanglingoperations and ruling out
the reversibility of entanglement in this setting.

Despite the axiomatic character of DNE operations, our results
lead to the establishment of new practically relevant connections — in
particular, that between DNE entanglement distillation and entangle-
ment testing with separable measurements — and our precise char-
acterisation of the properties of DNE sheds light on several important
physical phenomena in entanglement theory. For instance, through
the hypothesis testing connections built and strengthened here, we
showed that there is a strict gap in the asymptotic performance of
separable vs. global measurements in distinguishing entangled states
from unentangled ones. Further, we now know that DNE operations
exhibit no bound entanglement, and this immediately implies that a
solution to the important openproblemof the existence ofNPTbound
entanglementmayonlybeobtainedby looking at classes of operations
strictly smaller than DNE. Similarly, our irreversibility result shows that
any reversible frameworkmust use operations larger than ADNE. Such
insights can be regarded as no-go results that illuminate the extremely
complicated and still little-understood questions about the power of
different operations in transforming entangled states.

We hope that our results can find use in the understanding of the
often enigmatic landscape of asymptotic entanglement manipulation.
Characterising the distillability and reversibility properties, as well as
evaluating the distillable entanglement for other types of operations
remain major open problems in the field.

Note added: At the time of publication, two proofs of the gen-
eralised quantum Stein’s lemma have been claimed62,63. To recall, the
validity of this result would establish the conjectured equality between
the NE distillable entanglement and the regularised relative entropy of
entanglement D1ð�kSÞ for all states, complementing our main results.
Our investigation of the antisymmetric state in Supplementary Note IV
provides an independent and simpler proof of a special case of
this lemma.

We also note that the result of Theorem 3 can be deduced from a
claim found in thefirst pre-print versionof ref. 64 (Table 1, 4th row, 3rd
column), available at https://arxiv.org/abs/2011.13063v1. No complete
proof of this claim was available when the first pre-print of this work
appeared, in July 2023. A proof using a different technique than ours
canhowever be found in the published version of ref. 64 (Corollary 14).

Data availability
No data sets were generated or analysed during this study.

References
1. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B.

Concentrating partial entanglement by local operations. Phys. Rev.
A 53, 2046 (1996).

2. Bennett, C. H. et al. Purification of noisy entanglement and faithful
teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).

3. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K.
Mixed-state entanglement and quantum error correction. Phys.
Rev. A 54, 3824 (1996).

4. Bennett, C. H. et al. Teleporting an unknownquantum state via dual
classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70,
1895 (1993).

5. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states. Phys. Rev.
Lett. 69, 2881 (1992).

6. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys.
Rev. Lett. 67, 661 (1991).

7. Renner, R. Security of quantum key distribution, Ph.D. thesis, ETH
Zurich https://doi.org/10.48550/arXiv.quant-ph/0512258 (2005).

8. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell
nonlocality. Rev. Mod. Phys. 86, 419 (2014).

Table 1 | The distillable entanglement Ed,F and the entan-
glement cost Ec,F under four different classes of free
operations F , namely, non-entangling (NE), asymptotically
non-entangling (ANE), dually non-entangling (DNE), and
asymptotically dually non-entangling (ADNE) operations

Operations Distillable
entanglement

Entanglement
cost

Reversibility?

NE D1ð� k SÞ ? ⋆ No25

ANE D1ð� k SÞ ? D1ð� k SÞ Yes ?24,26

DNE DSEP,1ð� k SÞ ⋆ No25

ADNE DSEP,1ð� k SÞ D1ð� k SÞ No (Thms. 1–3)

The first two rows summarise results in the prior literature, while the last two contain our new
findings. The distillable entanglement under NE and ANE is the same, and it is conjectured to
coincide with the regularised relative entropy of entanglement D1ð�kSÞ24,26,47,48.
In this work, we completely characterise entanglement manipulation under DNE and ADNE
channels, which are less permissive and thus more practically relevant than their NE or ANE
counterparts. For both classes, the distillable entanglement is given by the regularised Piani

relative entropyDSEP,1ð�kSÞ (Theorem 1). The ADNE entanglement cost is the same as that under
ANE, and it thus equals D1ð�kSÞ (Theorem 2). The cost under DNE, instead, coincides with that
under the NE class: while it is natural to conjecture that this might also be given by some
regularised relative entropy expression, we do not yet have any explicit expression for it, andwe
thusmarked it with the symbol⋆. Our irreversibility result in Theorem3 then implies that there is
a gap between the distillable entanglement and the entanglement cost under (A)DNE opera-
tions; furthermore, through a careful analysis of asymptotic hypothesis testing, we can show an
operational gap in the power of NE and DNE operations in entanglement distillation.

Article https://doi.org/10.1038/s41467-024-54201-5

Nature Communications |        (2024) 15:10120 6

https://arxiv.org/abs/2011.13063v1
https://doi.org/10.48550/arXiv.quant-ph/0512258
www.nature.com/naturecommunications


9. Chitambar, E., Leung, D., Mančinska, L., Ozols, M. & Winter, A.
Everything you alwayswanted toknowabout LOCC (butwere afraid
to ask). Commun. Math. Phys. 328, 303 (2014).

10. Horodecki, P., Rudnicki, Ł. & Życzkowski, K. Five Open Problems in
Quantum Information Theory. PRX Quantum 3, 010101 (2022).

11. Open quantum problems, https://oqp.iqoqi.oeaw.ac.at/open-
quantum-problems, accessed: 2023-06-12

12. Hayden, P. M., Horodecki, M. & Terhal, B. M. The asymptotic
entanglement cost of preparing a quantum state. J. Phys. A 34,
6891 (2001).

13. Devetak, I. & Winter, A. Distillation of secret key and entanglement
from quantum states. Proc. R. Soc. A 461, 207 (2005).

14. Vidal, G. & Werner, R. F. Computable measure of entanglement.
Phys. Rev. A 65, 032314 (2002).

15. Plenio, M. B. Logarithmic negativity: a full entanglement monotone
that is not convex. Phys. Rev. Lett. 95, 090503 (2005).

16. Rains, E. M. A semidefinite program for distillable entanglement.
IEEE Trans. Inf. Theory 47, 2921 (2001).

17. Popescu, S. & Rohrlich, D. Thermodynamics and the measure of
entanglement. Phys. Rev. A 56, R3319 (1997).

18. Vedral, V. & Kashefi, E. Uniqueness of the entanglement measure
for bipartite pure states and thermodynamics. Phys. Rev. Lett. 89,
037903 (2002).

19. Horodecki, M., Oppenheim, J. & Horodecki, R. Are the laws of
entanglement theory thermodynamical? Phys. Rev. Lett. 89,
240403 (2002).

20. Carnot, S. Réflexions sur la puissance motrice de feu et sur les
machines propres à développer cette puissance (Bachelier, 1824).

21. Clausius, R. Über eine veränderte Form des zweiten Hauptsatzes
der mechanischen Wärmetheorie. Ann. Phys. 169, 481 (1854).

22. Thomson, W. II. On the dynamical theory of heat, with numerical
results deduced from Mr. Joule’s equivalent of a thermal unit, and
M. Regnault’s observations on steam. Trans. R. Soc. Edinb. XX, XV,
261 (1852).

23. Brandão, F. G. S. L. & Plenio, M. B. Entanglement theory and the
second law of thermodynamics. Nat. Phys. 4, 873 (2008).

24. Brandão, F. G. S. L. & Plenio, M. B. A reversible theory of entangle-
ment and its relation to the second law. Commun. Math. Phys. 295,
829 (2010).

25. Lami, L. & Regula, B. No second law of entanglement manipulation
after all. Nat. Phys. 19, 184 (2023).

26. Berta, M. et al. On a gap in the proof of the generalised quantum
Stein’s lemmaand itsconsequences for the reversibility of quantum
resources. Quantum 7, 1103 (2023).

27. Chitambar, E., de Vicente, J. I., Girard, M. W. & Gour, G. Entangle-
ment manipulation beyond local operations and classical commu-
nication. J. Math. Phys. 61, 042201 (2020).

28. Vedral, V., Plenio, M. B., Rippin, M. A. & Knight, P. L. Quantifying
entanglement. Phys. Rev. Lett. 78, 2275 (1997).

29. Vedral, V. & Plenio, M. B. Entanglement measures and purification
procedures. Phys. Rev. A 57, 1619 (1998).

30. Piani, M. Relative entropy of entanglement and restricted mea-
surements. Phys. Rev. Lett. 103, 160504 (2009).

31. Brandão, F. G. S. L., Christandl, M. & Yard, J. Faithful squashed
entanglement. Commun. Math. Phys. 306, 805 (2011).

32. Li, K. & Winter, A. Relative entropy and squashed entanglement.
Commun. Math. Phys. 326, 63 (2014).

33. Berta, M. & Tomamichel, M. Entanglement monogamy via multi-
variate trace inequalities. Commun. Math. Phys. 405, 29 (2024).

34. Brandão, F. G. S. L., Harrow, A. W., Lee, J. R. & Peres, Y. Adversarial
hypothesis testing and a quantum Stein’s lemma for restricted
measurements. IEEE Trans. Inf. Theory 66, 5037 (2020).

35. Lami, L., Regula, B. & Streltsov, A. No-go theorem for entanglement
distillation using catalysis. Phys. Rev. A 109, L050401 (2024).

36. Vollbrecht, K. G. H. & Werner, R. F. Entanglement measures under
symmetry. Phys. Rev. A 64, 062307 (2001).

37. Shor, P. W. Equivalence of additivity questions in quantum infor-
mation theory. Commun. Math. Phys. 246, 473 (2004).

38. Hayden, P. & Winter, A. Counterexamples to the maximal p-norm
multiplicativity conjecture for all p > 1. Commun. Math. Phys. 284,
263 (2008).

39. Cubitt, T., Harrow, A. W., Leung, D., Montanaro, A. & Winter, A.
Counterexamples to additivity of minimum output p-Rényi entropy
for p close to 0. Commun. Math. Phys. 284, 281 (2008).

40. Hastings, M. B. Superadditivity of communication capacity using
entangled inputs. Nat. Phys. 5, 255 (2009).

41. Smith, G. & Yard, J. Quantum communication with zero-capacity
channels. Science 321, 1812 (2008).

42. Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55,
1613 (1997).

43. Shor, P. The quantum channel capacity and coherent information,
Lecture notes, MSRI Workshop on Quantum Computation (2002).

44. Devetak, I. The private classical capacity and quantum capacity of a
quantum channel. IEEE Trans. Inf. Theory 51, 44 (2005).

45. Holevo, A. S. The capacity of the quantum channel with general
signal states. IEEE Trans. Inf. Theory 44, 269 (1998).

46. Schumacher, B. & Westmoreland, M. D. Sending classical infor-
mation via noisy quantum channels. Phys. Rev. A 56, 131 (1997).

47. Brandão, F. G. S. L. & Plenio, M. B. A generalization of quantum
Stein’s lemma. Commun. Math. Phys. 295, 791 (2010).

48. Berta, M. et al. The tangled state of quantum hypothesis testing.
Nat. Phys. 20, 172 (2024).

49. Aaronson, S., Beigi, S., Drucker, A., Fefferman, B. & Shor, P. The
power of unentanglement, in Proc. 23rd IEEE Annual Conf. Comput.
Complex., CCC ’08 https://doi.org/10.1109/CCC.2008.5 (IEEE
Computer Society, 2008) pp. 223–236

50. Umegaki, H. Conditional expectation in an operator algebra. IV.
Entropy and information. Kodai Math. Sem. Rep. 14, 59 (1962).

51. Christandl, M. The Structure of Bipartite Quantum States - Insights
from Group Theory and Cryptography, Ph.D. thesis, University of
Cambridge https://arxiv.org/abs/quant-ph/0604183 (2006).

52. Hayashi,M.Quantum Information Theory:Mathematical Foundation,
2nd ed. Graduate Texts in Physics (Springer, 2017).

53. Vidal, G. & Cirac, J. I. Irreversibility in asymptotic manipulations of
entanglement. Phys. Rev. Lett. 86, 5803 (2001).

54. Wang, X. &Wilde,M.M. Exact entanglement cost of quantumstates
and channels under positive-partial-transpose-preserving opera-
tions. Phys. Rev. A 107, 012429 (2023).

55. Werner, R. F. Quantum states with Einstein-Podolsky-Rosen corre-
lations admitting a hidden-variable model. Phys. Rev. A 40,
4277 (1989).

56. Christandl, M., Schuch, N. & Winter, A. Entanglement of the anti-
symmetric state. Commun. Math. Phys. 311, 397 (2012).

57. Lancien, C. et al. Should entanglement measures be monogamous
or faithful? Phys. Rev. Lett. 117, 060501 (2016).

58. Plenio, M. B. Problem 20 in ‘Some Open Problems in Quantum
Information Theory’, O. Krueger and R. F. Werner, preprint arXiv:-
quant-ph/0504166 https://doi.org/10.48550/arXiv.quant-ph/
0504166 (2005).

59. Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod.
Phys. 91, 025001 (2019).

60. Audenaert, K., Plenio, M. B. & Eisert, J. Entanglement cost under
positive-partial-transpose-preserving operations. Phys. Rev. Lett.
90, 027901 (2003).

61. Regula, B. & Lami, L. Reversibility of quantum resources through
probabilistic protocols. Nat. Commun. 15, 3096 (2024).

62. Hayashi, M. and Yamasaki, H. Generalized quantum Stein’s lemma
and second law of quantum resource theories, preprint

Article https://doi.org/10.1038/s41467-024-54201-5

Nature Communications |        (2024) 15:10120 7

https://oqp.iqoqi.oeaw.ac.at/open-quantum-problems
https://oqp.iqoqi.oeaw.ac.at/open-quantum-problems
https://doi.org/10.1109/CCC.2008.5
https://arxiv.org/abs/quant-ph/0604183
https://doi.org/10.48550/arXiv.quant-ph/0504166
https://doi.org/10.48550/arXiv.quant-ph/0504166
www.nature.com/naturecommunications


arXiv:2408.02722 https://doi.org/10.48550/arXiv.2408.
02722 (2024).

63. Lami, L. A solution of the generalised quantum Stein’s lemma,
preprint arXiv:2408.06410 https://doi.org/10.48550/arXiv.2408.
06410 (2024).

64. Cheng, H.-C., Winter, A. & Yu, N. Discrimination of quantum states
under locality constraints in themany-copy setting.Commun.Math.
Phys. 404, 151 (2023).

Acknowledgements
L.L. thanks the Freie Universität Berlin for hospitality. L.L. and B.R. are
grateful to Julio I. de Vicente, Eric Chitambar, Marco Tomamichel, and
Andreas Winter for useful comments on the manuscript. We also thank
Mario Berta for insightful discussions.

Author contributions
L.L. and B.R. contributed to every aspect of the research and writing of
this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-54201-5.

Correspondence and requests for materials should be addressed to
Ludovico Lami or Bartosz Regula.

Peer review informationNatureCommunications thanksGiladGour and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-54201-5

Nature Communications |        (2024) 15:10120 8

https://doi.org/10.48550/arXiv.2408.02722
https://doi.org/10.48550/arXiv.2408.02722
https://doi.org/10.48550/arXiv.2408.06410
https://doi.org/10.48550/arXiv.2408.06410
https://doi.org/10.1038/s41467-024-54201-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Distillable entanglement under dually non-entangling operations
	Results
	Our contribution
	Notation
	Distillable entanglement
	Proof sketch of Theorem 1 and connection with hypothesis testing
	Entanglement cost
	Gap with the relative entropy
	Irreversibility of entanglement manipulation
	Entanglement testing with separable measurements

	Discussion
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




