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Universal and operational benchmarking of quantum
memories
Xiao Yuan 1,2,3✉, Yunchao Liu 4,5✉, Qi Zhao 5, Bartosz Regula 6, Jayne Thompson 7 and Mile Gu6,7,8✉

Quantum memory—the capacity to faithfully preserve quantum coherence and correlations—is essential for quantum-enhanced
technology. There is thus a pressing need for operationally meaningful means to benchmark candidate memories across diverse
physical platforms. Here we introduce a universal benchmark distinguished by its relevance across multiple key operational
settings, exactly quantifying (1) the memory’s robustness to noise, (2) the number of noiseless qubits needed for its synthesis, (3) its
potential to speed up statistical sampling tasks, and (4) performance advantage in non-local games beyond classical limits. The
measure is analytically computable for low-dimensional systems and can be efficiently bounded in the experiment without
tomography. We thus illustrate quantum memory as a meaningful resource, with our benchmark reflecting both its cost of creation
and what it can accomplish. We demonstrate the benchmark on the five-qubit IBM Q hardware, and apply it to witness the efficacy
of error-suppression techniques and quantify non-Markovian noise. We thus present an experimentally accessible, practically
meaningful, and universally relevant quantifier of a memory’s capability to preserve quantum advantage.
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INTRODUCTION
Memories are essential for information processing, from commu-
nication to sensing and computation. In the context of quantum
technologies, such memories must also faithfully preserve the
uniquely quantum properties that enable quantum advantages,
including quantum correlations and coherent superpositions1.
This has motivated extensive work in experimental realisations
across numerous physical platforms2,3, and presents a pressing
need to find operationally meaningful means to compare
quantum memories across diverse physical and functional
settings. In contrast, present approaches towards detecting and
benchmarking the quantum properties of memories are often ad
hoc, involving experimentally taxing process tomography, or only
furnishing binary measures of performance based on tests of
entanglement and coherence preservation4–11.
Our work addresses these issues by envisioning memory as a

physical resource. We provide a means to quantify this resource by
asking: how much noise can a quantum memory sustain before it
is unable to preserve uniquely quantum aspects of information?
Defining this as the robustness of a quantum memory (RQM), we
demonstrate that the quantifier has diverse operational relevance
in benchmarking the quantum advantages enabled by a memory
—from speed-up in statistical sampling to non-local quantum
games (see Fig. 1). We prove that RQM behaves like a physical
resource measure, representing the number of copies of a pure
idealised qubit memory that are required to synthesise the target
memory. We show the measure to be exactly computable for
many relevant cases, and introduce efficient general bounds
through experimental and numerical methods. The quantifier is, in
particular, experimentally accessible without full tomography,
enabling immediate applications in benchmarking different

memory platforms and error sources, as well as providing a
witness for non-Markovianity. We experimentally test our bench-
mark on the five-qubit IBM Q hardware for different types of error,
demonstrating its versatility. In addition, the generality of our
methods within the broad physical framework of quantum
resource theories12–14 ensures that many of our operational
interpretations of the RQM can also extend to the study of more
general quantum processes15–20, including general resource
theories of quantum channels, gate-based quantum circuits, and
dynamics of many-body physics. Our work thus presents an
operationally meaningful, accessible and practical performance-
based measure for benchmarking quantum processors that is
immediately relevant in today’s laboratories.

RESULTS
Framework of quantum memories
Any quantum memory can be viewed as a channel in time—
mapping an input state we wish to encode into a state we will
eventually retrieve in the future. An ideal memory preserves all
information, such that proper post-processing operations on the
output state can always undo the effects of the channel. Such
channels preserve all state overlaps, in the sense that any pair of
distinguishable input states remain distinguishable at output. In
contrast, this is not possible with classical memories that store
only classical data. To distinguish orthogonal states in some basis
kj i, we are forced to measure in this basis and record only the
classical measurement outcome k. Such a measure-and-prepare
process will never distinguish 0j i þ 1j i from 0j i � 1j i. In fact, this
procedure exactly encompasses the class of all entanglement-
breaking (EB) channels21,22: if we store one part of an entangled
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bipartite state within classical memory, the output is always
separable. As such, classical memories are mathematically
synonymous with EB channels.
To systematically characterise how well a general memory

preserves quantum information, we consider how robust it is
against noise. We define the robustness of quantum memories
(RQM) as the minimal amount of a classical memory that needs to
be mixed with the target memory N such that the resultant
probabilistic mixture is also classical:

RðN Þ ¼ min
M2EB

s � 0j N þ sM
1 þ s

2 EB

� �
; (1)

where the minimisation is over the set of all EB channels EB. We
explicitly prove that the robustness measure is a bona fide
resource measure of quantum memories, satisfying all necessary
operational properties. Crucially, we show that the robustness
satisfies monotonicity—a memory’s RQM can never increase
under any resource non-generating (RNG) transformation, that is,
any physical transformation of quantum channels that maps EB
channels only to EB channels. We thus refer to such transforma-
tions as free within the resource theory of quantum memories.
Commonly encountered free transformations include pre- or post-
processing with an arbitrary channel or, more generally, the class
of so-called classically correlated transformations10.

Operational interpretations
We illustrate the operational relevance of RQM in three distinct
settings. The first is memory synthesis. From the perspective of
physical resources, one important task is to synthesise a target
resource by expending a number of ideal resources, which can be
thought of as the “currency” in this process. Intuitively, a more
resourceful object would be harder to synthesise and hence
require more ideal resources, allowing us to understand the
required number of ideal memories as the resource cost of a given
memory. In entanglement theory, an analogous concept involves
determining the minimum number of Bell pairs that are required
to engineer a particular entangled state using free operations

(entanglement cost)23,24. For quantum memories, we consider an
ideal qubit memory I2 as the identity channel that perfectly
preserves any qubit state. The task of single-shot memory
synthesis is then to convert n copies of ideal qubit memories
I�n
2 to the target memory N via a free transformation. We show

that the robustness measure lower bounds the number n of the
requisite ideal memories, i.e., n � dlog2ðdRðN Þe þ 1Þe. There-
fore, a larger robustness indicates that the memory requires more
ideal resources to synthesise. Furthermore, we show that there
always exists an optimal RNG transformation that saturates this
lower bound, and thus the robustness tightly captures the optimal
resource cost for this task. We summarise our first result as follows.
Theorem 1 The minimal number of ideal qubit memories

required to synthesise a memory N is n ¼ dlog2ðdRðN Þe þ 1Þe.
In “Methods” section, we further consider imperfect memory

synthesis by allowing an error ε and show that the optimal
resource cost is characterised by a smoothed robustness measure
with smoothing parameter ε. Theorem 1 thus corresponds to the
special case of ε= 0. Complementing our result on memory
synthesis, recent works25,26 studied the task of single-shot
memory distillation with another resource measure based on
the hypothesis testing entropy.
In the second task, we consider the classical simulation of

quantum memories. The motivation here is analogous to
computational speed-up—the observational statistics of any
quantum algorithm can be simulated on a classical computer,
albeit at an exponential overhead. Similarly, one strategy for
simulating quantum memories is to perform full tomography of
the input state and store the resulting classical density matrix.
Then, at the output of the memory, the input state ρ is
reconstructed and any observational statistics on ρ can be directly
obtained. This method clearly requires an exponential amount of
input samples for an n-qubit memory—and thus results in an
exponential overhead in resources and speed.
Formally, the functional behaviour of any memory is fully

described by how its observational statistics vary as a function of
input, i.e., the set of expectation values TrðONðρÞÞ, for each

Fig. 1 A schematic of the robustness of quantum memory (RQM) and its operational meanings. This work focuses on the resource theory
of quantum memories. We define a entanglement-breaking memories as free resources and propose the RQM as a resource measure of b a
quantum channel. We consider three operational interpretations of the measure in c one-shot memory synthesis with resource non-
generating (RNG) transformations; d classical simulation of the measurement statistics of quantum memory; and e a family of two-player non-
local quantum games generalising state discrimination.
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possible observable O and input state ρ. In order to estimate
Tr½ONðρÞ� to an additive error ε with failure probability δ, we need
T0∝ 1/ε2log(δ−1) samples when having access to N due to
Hoeffding’s inequality27. Alternatively, we can linearly expand the
target memory as N ¼ P

iciMi; ci 2 R and obtain the target
statistics by using Mi and measuring Tr½OMiðρÞ� as
Tr½ONðρÞ� ¼ P

iciTr½OMiðρÞ�. When only having access to free
resources in a specific decompositionN ¼ P

iciMi , we need T /
kck21=ε2logðδ�1Þ samples. The simulation overhead is thus given
by C ¼ kck21 / T=T0. We then prove that the optimal overhead
that minimizes over all possible expansions is given exactly by the
RQM of the quantum channel.
Theorem 2 The minimal overhead—in terms of extra runs or

input samples needed—to simulate the observation statistics of a
quantum memory N is given by Cmin ¼ ð1 þ 2RðN ÞÞ2.
For EB channels M, the robustness RðMÞ vanishes and hence

CminðMÞ ¼ 1, aligning with the intuition that classical memories
require no extra simulation cost. For n ideal qubit memories,
RðI�n

2 Þ ¼ 2n � 1 and hence the classical simulation overhead
scales exponentially with n.
In the third setting, we consider the capability of quantum

memories to provide advantages in a class of two-player non-local
quantum games. Related games of this type have previously been
employed in understanding features of Bell nonlocality28 and
detecting quantum memories10. Consider then a set of states {σi},
from which one party (Alice) selects one state uniformly at random
and encodes it in a memory N . Her counterpart Bob is given this
memory and tasked with guessing which of the states {σi} was
encoded by performing a measurement {Oj}. The probability that
Bob guesses σj when the input state is σi is given by Tr½N ðσiÞOj�.
Thus, by associating with each such guess a coefficient αij 2 R, we
can define the payoff of the game—this can be used to give
different weights to corresponding states, or to penalise certain
guesses. The performance of the two players in the game defined
by G ¼ ffαijg; fσig; fOjgg is then evaluated using the average
payoff function,

PðN ;GÞ ¼
X
i;j

αijTr½N ðσiÞOj �: (2)

Such games can be considered as a generalisation of the task of
quantum state discrimination, as can be seen by taking αij= δijpi
for some probability distribution pi . We see that the players’
maximum achievable performance is limited by Bob’s capacity to
discern Alice’s inputs, and thus each such game serves as a gauge
for the memory quality of N . In order to establish a quantitative
benchmark for the resourcefulness of a given memory, we can
then compute the best advantage it can provide in the same
game G over all classical memories. To make such a problem well-
defined, we will constrain ourselves to games for which the payoff
PðM;GÞ is non-negative. In the “Methods” section, we then show
that the maximal capabilities of a quantum memory in this setting
are exactly measured by the robustness.
Theorem 3 The advantage that a quantum memory N can

provide over classical memories in all non-local quantum games is
given by

max
G

PðN ;GÞ
max
M2EB

PðM;GÞ ¼ RðN Þ þ 1: (3)

We will shortly see that such games, in addition to showcasing
another operational aspect of the robustness, allow us to
efficiently bound RðN Þ in many relevant cases.

Computability and measurability
We can efficiently detect and bound the robustness of a memory
through the performance of the memory in game scenarios.
Specifically, consider games G such that all classical memories
achieve a payoff in the range [0, 1]. By Theorem 3, we know that any

such game G provides a lower bound PðN ;GÞ � 1 on RðN Þ, akin
to an entanglement witness quantitatively bounding measures of
entanglement29. This provides a physically accessible way of
bounding the robustness measure by performing measurements
on a chosen ensemble of states, and in particular there always exists
a choice of a quantum game G such that PðN ;GÞ � 1 is exactly
equal to RðN Þ. This approach makes the measure accessible also in
experimental settings, avoiding costly full process tomography. We
use this method to explicitly compute the robustness of some typical

Fig. 2 Numerical evaluation of the exact value of robustness of
quantum memories. a Robustness of memories with qubit inputs
and computational basis f 0j i; 1j ig for dephasing channels
Δp(ρ)= pρ+ (1− p)ZρZ, stochastic damping channels
DpðρÞ ¼ pρ þ ð1 � pÞ 0j i 0h j, and erasure channels EpðρÞ ¼ pρ þ
ð1 � pÞ 2j i 2h j with 2j i orthogonal to f 0j i; 1j ig. b Memory robustness
under dynamical decoupling (DD) and its quantification of non-
Markovianity. We consider a qubit memory (M) coupled to a qubit
bath (B) with an initial state ρBð0Þ ¼ 0:4 0j i 0h j þ 0:6 1j i 1h j and an
interaction Hamiltonian H= 0.2(XM⊗ XB+ YM⊗ YB)+ ZM⊗ ZB. Here
X, Y, Z are the Pauli matrices. We consider the evolution with time t
from 0 to π. To decouple the interaction, we apply X operations on
the memory at a constant rate. We show that the memory
robustness can be enhanced via dynamical decoupling (DD).
Furthermore, as the memory robustness can increase with time,
we calculate the non-Markovianity using the robustness derived
measure as defined in Eq. (5).
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quantum memories in Fig. 2a, with detailed construction of the
quantum games deferred to the Supplementary Notes.
In addition to the above linear witness method, we also give

non-linear witnesses of a memory N based on the moments of its
Choi state. Consider channels N with input dimension d and k=
0, 1, …, ∞, in Supplementary Notes, we prove

RðN Þ � d
k� 1
k Tr ΦNð Þk

h i� �1
k � 1, where ΦN is the Choi state of

N . Higher values of k provide tighter lower bounds, which can be
measured in experiment by implementing a generalised swap test
on k copies of the channel. In the limit k→∞, we obtain the
strongest bound, which depends only on the maximal eigenvalue
of the Choi state. Remarkably, the bound is actually tight for all
qubit-to-qubit and qutrit-to-qubit channels.
Theorem 4 The RQM of any quantum channel N with input

dimension dA and output dimension dB can be lower bounded by

RðN Þ � maxf0; dA max eig ðΦN Þ � 1g; (4)

and equality holds when dA ≤ 3 and dB= 2.
We stress that this provides an exact and easily computable

expression for the robustness for low-dimensional channels. This
contrasts with related measures of entanglement of quantum
states, such as the robustness of entanglement30, for which no
general expression exists even in 2 × 2 dimensional systems.
Given a full description of the memory, we can also provide

efficiently computable numerical bounds on the robustness via a
semi-definite programme, which we show to be tight in many
relevant cases. We leave the detailed discussion to
Supplementary Notes.

Applications
The RQM, being information theoretical in nature, applies across
all physical and operational settings. This enables its immediate
applicability to many present studies of quantum memory. For
example, non-Markovianity and mitigation of errors resulting from
non-Markovianity are widely studied problems in the context of
quantum memories. RQM can be used both to identify the former,
and measure the efficacy of the latter.
In particular, considering a memory Nt that stores states from

time 0 to t ≥ 0, we can quantify its non-Markovianity as

IðTÞ ¼
Z T

0
dtmax 0;

dRðN tÞ
dt

� �
: (5)

For any Markovian processN t , the robustness measureRðN tÞ is a
decreasing function of time owing to monotonicity of R (see
“Methods” section). Thus IðTÞ ¼ 0 for any Markovian process N t ,
and nonzero values of IðTÞ directly quantify the memory’s non-
Markovianity in a similar way to ref. 31. Meanwhile, the goal of any
error-mitigation procedure is to preserve encoded qubits. Thus,
the characterisation of an increase in the RQM of relevant
encoded sub-spaces provides a universal measure of the efficacy
for any such behaviour.
In Fig. 2b, we illustrate these ideas using a single-qubit memory

subject to unwanted coupling from a qubit bath. The RQM
degrades over time (yellow-starred line)—but has a revival around
t= 1, indicating non-Markovianity. Indeed, plotting IðtÞ, we see
clear signatures of non-Markovian effects arise at this moment
(cyan-crossed line). Meanwhile, the green-dotted line quantifies
how dynamical decoupling improves this memory through
increased RQM. This improvement has a direct operational
interpretation. For example, the approximately fourfold increase
in robustness around t= 0.8 indicates that a quantum protocol
that runs on a dynamically decoupled quantum memory could be
much harder to simulate than its counterpart.

Experiment
We experimentally verify our benchmarking method on the ‘ibmq-
ourense’ processor on the IBM Q cloud. We first consider a proof-of-
principle verification of the scheme by estimating the RQM of three
types of single-qubit noise channels—the dephasing channel,
stochastic damping channel, and erasure channels. We synthesise
the noise channels by entangling the target state with ancillary
qubits. For example, the dephasing channel Δp(ρA)= pρA+ (1− p)
ZρAZ can be realised by the circuit in the dashed box of Fig. 3a,
where we input an ancillary state 0j iE , rotate it with
RYθ ¼ expð�iθY=2Þ, and apply a controlled-Z. Here θ ¼
2 arccosð ffiffiffi

p
p Þ and Y is Pauli-Y matrix. We exploit the quantum game

approach to estimate the RQM of the three types of noise channels.
We choose a normalised quantum game G with the maximal payoff
for EB channels of maxM2EB PðM;GÞ ¼ 1, so that the robustness of
memory N can be lower bounded by RðN Þ � PðN ;GÞ � 1. For
each input-output setting (σi, Oj), we measure the probability pðjjiÞ ¼
Tr½OjNðσiÞ� with 8192 experimental runs. The payoff is obtained as a
linear combination of the probabilities PðN ;GÞ ¼ P

i;jαi;jpðjjiÞ with
real coefficients αi,j. As shown in Fig. 3b, the experimental data
(circles, upper and lower triangles) align well with the theoretical

Fig. 3 Experimental verification of the benchmark with IBM Q hardware. a Circuit diagram for realising the dephasing channel. b The RQM
of dephasing channels Δp(ρ)= pρ+ (1− p)ZρZ, stochastic damping channels DpðρÞ ¼ pρ þ ð1 � pÞ 0j i 0h j, and erasure channels EpðρÞ ¼
pρ þ ð1 � pÞ 2j i 2h j with 2j i orthogonal to the basis f 0j i; 1j ig. We synthesise the noise channels by interacting the target system with up to
two ancillary qubits. We measure the payoff of quantum games PðN ;GÞ which lower bounds the RQM as RðN Þ � PðN ;GÞ � 1.
c Benchmarking IBM Q hardware via the RQM of sequential controlled-X (CX) gates. We interchange the control and target qubit so that two
sequential CX gates will not cancel out. For example, denote CX0

1 to be the CX gate with control qubit 0 and target qubit 1; the three CX gates
are the swap gate CX0

1CX
1
0CX

0
1 � SWAP and the six controlled-X gates become the identity gate CX1

0CX
0
1CX

1
0CX

0
1CX

1
0CX

0
1 � I4. The error bar is

three times the standard deviation for both plots.
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result (solid lines), with a deviation of less than 0.13. The deviation
mostly results from the inherent noise in the hardware, especially the
notable two-qubit gate error and the read-out error.
Next, we show that the RQM can be applied to benchmark

quantum gates and quantum circuits. Conventional quantum
process benchmarking approaches, such as randomised bench-
marking32,33, generally focus on characterising the similarity
between the noisy circuit and the target circuit. In contrast, our
method is concerned with the capability of the noisy quantum
processor in preserving quantum information, which can be thus
regarded as an alternative operational approach for benchmark-
ing processes. In the experiment, we focus on the two-qubit
controlled-X (CX) gate, a standard gate used for entangling qubits.
We sequentially apply n (up to six) CX gates with interchanged
control and target qubits for two adjacent gates. For example,
one, three, and six CX gates correspond to the CX gate, the swap
gate, and the identity gate, respectively.
Assuming that the dominant error is due to depolarising or

dephasing effects, we estimate the RQM of each circuit via the
correspondingly designed quantum game. As shown in Fig. 3c, we
can see that although the robustness with one CX is 2.667 ± 0.106, it
only slowly decreases to 2.497 ± 0.115 for six CX gates. Our results
thus indicate that while the CX gate is imperfect (with an average
0.0340 decrease of robustness for each CX gate), the dominant noise
of the two-qubit circuit may instead stem from imperfect state
preparation and measurement (roughly leading to a 0.3 decrease in
robustness). We also note that the large robustness loss of a single
CX gate might also be due to the existence of other errors, which
would imply that the choice of the quantum game could be further
optimised. However, whenever the quantum game gives a large
lower bound for the robustness, this is sufficient to ensure that the
quantum process performs well in preserving quantum information.
To demonstrate this, we consider the circuit CX0

2 � CX0
1 for preparing

the three-qubit GHZ state. We lower bound the robustness as
5.837 ± 0.548, verifying that the three-qubit noisy circuit can preserve
more quantum information than all two-qubit circuits, whose
robustness is upper bounded by 3. We leave the detailed
experimental results and analysis to the Supplementary Notes.

DISCUSSION
In this work, we introduced an operationally meaningful, practically
measurable and platform-independent benchmarking method for
quantum memories. We defined the RQM and showed it to be an
operational measure of the quality of a memory in three different
practical settings. The greater the robustness of a memory, the more
ideal qubit memories are needed to synthesise the memory; the
more classical resources are required to simulate its observational
statistics; and the better the memory is at two-player non-local
quantum games based on state discrimination. The measure can be
evaluated exactly in low-dimensional systems, and efficiently
approximated both numerically by semi-definite programming and
experimentally through measuring suitable observables. This thus
constitutes a promising means to quantify the quantum mechanical
aspects of information storage, and provides practical tools for
benchmarking quantum memories across different experimental
platforms and operational settings. The theory is applicable across
different physical platforms exhibiting any known type of error
source, as we experimentally confirm on the five-qubit IBM Q
hardware. With the development of near-term noisy intermediate-
scale quantum technologies34,35, we anticipate that our quantifier
can become an industry standard for benchmarking quantum
devices.
From a theoretical perspective, our work also constitutes a

significant development in the resource theory of quantum
memories. The only previously known general measure of this
resource involved a performance optimisation over a large class of
possible quantum games10, thus making it difficult to evaluate,

experimentally inaccessible, and obscuring a direct quantitative
connection to tasks of practical relevance—the robustness
explicitly addresses all of these issues. Furthermore, the generality
of the resource-theoretic framework ensures that the tools
developed here for quantum memories can be naturally extended
to other settings, including purity, coherence, entanglement of
channels18,36–46, and the magic of operations47,48.
There are a number of interesting future considerations. One is

to consider how memory robustness relates to another opera-
tional task: the storage and retrieval of encoded quantum states,
whose performance can thought to represent some sort of
memory capacity. This latter quantifier can be thought in the
context of resource distillation. It asks how much many imperfect
memories in question can be used to synthesize an ideal qubit
memory. Thus, memory capacity is essentially the dual to memory
robustness, which was shown above to quantify the reverse
process of resource dilution (quantifying the amount of ideal qubit
memory needed to synthesis a target memory). Indeed, recent
follow-up works suggest that memory distillation could also be
described within the same resource-theoretic framework, albeit
with a resource monotone alternative to robustness25,26,49. Other
interesting potentials include consideration of infinite-dimensional
quantum systems, where one may be interested in quantum
memories that preserve non-classicality or non-Gaussianity—
potential sources of quantum advantage in continuous-variable
quantum computation50–54. Finally, memories are essentially a
question of reversibility, and thus naturally relate to heat
dissipation in thermodynamics55,56. Indeed, recent results show
connections between free energy and information encoding57,
opening interesting possibilities toward understanding the
thermodynamic consequences of such memory quantifiers.

METHODS
Here we present properties of the robustness measure, formal statements
of Theorems 1–4 and sketch their proofs. Full version of the proofs and
details on the numerical simulations can be found in Supplementary Notes.

Properties of RQM
Recall the definition of RQM

RðN Þ ¼ min s � 0 : 9M 2 EB; s:t:
N þ sM
1 þ s

2 EB

� �
; (6)

where our chosen set of free channels are the EB channels. Define free
transformation O as the set of physical transformations on quantum
channels (super-channels) that map EB channels to EB channels, i.e.
O ¼ fΛ : ΛðMÞ 2 EB;8M 2 EBg. This class includes, for instance, the
family of classically correlated transformations, which were considered in10

as a physically motivated class of free transformations under which
quantum memories can be manipulated. In particular, transformations
ΛðN Þ ¼ M1 � N �M2 with arbitrary pre- and post-processing channels
M1;M2 are free. We show that RQM satisfies the following properties.
Non-negativity. RðNÞ � 0 with equality if and only if N 2 EB.
Monotonicity. R does not increase under any free transformation,

RðΛðN ÞÞ 	 RðN Þ for arbitrary N and Λ 2 O.
Convexity. R does not increase by mixing channels,

R P
ipiN i

� � 	 P
ipiRðN iÞ.

Additional properties, such as bounds under the tensor product of
channels are presented in Supplementary Notes.
Proof Non-negativity follows directly from the definition. For mono-

tonicity, suppose s ¼ RðN Þ with the minimisation achieved by M such
that

1
s þ 1

N þ s
s þ 1

M ¼ M0 2 EB: (7)

Apply an arbitrary free transformation Λ on both sides and using linearity,
we obtain 1

sþ 1ΛðN Þ þ s
sþ 1ΛðMÞ ¼ Λ M0ð Þ 2 EB. Therefore by definition

RðΛðN ÞÞ 	 s ¼ RðN Þ. For convexity, suppose si ¼ RðN iÞ with the
minimisation achieved by Mi for each i and let
M0

i ¼ ðN i þ siMiÞ=ð1 þ siÞ. Let s=
P

ipisi , N ¼ P
ipiN i and
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M ¼ 1
s

P
ipisiMi , then by convexity of the set of EB channels

1
sþ 1N þ s

s þ 1
M ¼ 1

s þ 1

X
i

piðsi þ 1ÞM0
i 2 EB; (8)

therefore by definition we have R P
ipiN i

� � ¼ RðNÞ 	 s ¼ P
ipisi ¼

P
ipiRðN iÞ.

Single-shot memory synthesis
Here we study a more general scenario, imperfect memory synthesis,
which allows a small error between the synthesised memory and the
target memory. The resource cost for this task is defined as the minimal
dimension required for the ideal qudit memory Id ,

RεsynðN Þ ¼ min d : 9Λ 2 O; k ΛðIdÞ � Nk
 	 ε
	 


; (9)

where k � k
 denotes the diamond norm, which describes the distance of
two channels. We also include a smooth parameter ε of the cost which
tolerates an arbitrary amount of error in the synthesis protocol. The case
with ε= 0 corresponds to the case with exact synthesis. When considering
the ideal qubit memory I2 as the unit optimal resource, the minimal
number of ideal qubit memories I�n

2 required for memory synthesis is
given by n ¼ dlog2ðRεsynðN ÞÞe
Correspondingly, we define a smoothed version of the robustness

measure by minimising over a small neighbourhood of quantum channels,

RεðN Þ ¼ min
kN 0 �Nk
 	 ε

RðN 0Þ: (10)

We prove that the smoothed robustness measure exactly quantifies the
resource cost for imperfect single-shot memory synthesis.
Formal statement of Theorem 1. For any quantum channel N and any

0 ≤ ε < 1, the resource cost for single-shot memory synthesis satisfies

RεsynðN Þ ¼ 1 þ dRεðN Þe: (11)

Note that by setting ε= 0 we recover the result for perfect memory
synthesis stated in the main text.
Proof We start by proving RεsynðN Þ � 1 þ dRεðN Þe. The first step is to

show that the robustness of the identity channel is RðIdÞ ¼ d � 1. The
proof of this fact is omitted here. Next we show that the desired inequality
can be proven using the monotonicity property. For an arbitrary memory
synthesis protocol ΛðIdÞ ¼ N 0 where k N 0 � Nk
 	 ε, we have

1 þ RεðN Þ ¼ 1 þ min
kN 0 �Nk
	ε

RðN 0Þ

	 1 þ RðN 0Þ
¼ 1 þ RðΛðIdÞÞ
	 1 þ RðIdÞ
¼ d:

(12)

Here the second line follows by definition and the fourth line follows from
monotonicity. As the above inequality holds for all memory synthesis
protocols, it also holds for the optimal protocol. Also notice that
dimensions are integers. Thus we derive that RεsynðN Þ � 1 þ dRεðN Þe.
To prove the other side RεsynðN Þ 	 1 þ dRεðN Þe, suppose the channel

achieves the mimum of Eq. (10) is N 0 , and let dc ¼ 1 þ dRðN 0Þe. To
prove the desired inequality, it suffices to show that 9Λ 2 O such that
ΛðIdc Þ ¼ N 0 . Indeed such a Λ is a protocol that achieves the required
accuracy using resource 1þ dRεðN Þe, thus the optimal protocol should
only use less resource.
Next we explicitly construct such a free transformation Λ, which transforms

a quantum channel to another channel. As there is a one-to-one
correspondence between Choi states and quantum channels, we give this
construction based on transformation of the Choi state:

ΛðΦCÞ ¼ Tr ϕþΦCð ÞΦN 0 þ Tr ðI � ϕþÞΦCð ÞΦM; (13)

where Φ denotes the Choi state of the subscript channel and ϕ+ is the
maximally entangled state. In the full proof we show that Λ is a valid physical
transformation, i.e. a quantum super-channel.
As it is easy to verify that ΛðIdc Þ ¼ N 0 , it only remains to show that Λ is

a free transformation, which maps EB channels to EB channels. To do this,
first notice that as dc � 1 þ RðN 0Þ, there exists M;M0 2 EB such that

1
dc

N 0 þ dc � 1
dc

M ¼ M0: (14)

Then we can rewrite Eq. (13) as

ΛðΦCÞ ¼ qΦM0 þ ð1 � qÞΦM; (15)

with q ¼ dcTr ϕþΦC½ �. When C is an EB channel, ΦC is a separable state, and
we have 0 ≤ q≤ 1. Thus ΛðΦCÞ is a separable Choi state that corresponds to an
EB channel, which means that Λ is a free transformation and concludes
the proof.

Simulating observational statistics
Observe that the general simulation strategy is to find a set of free
memories fMig � EB such that the target memory can be linearly
expanded as N ¼ P

iciMi ; ci 2 R. By using Mi and measuring
Tr½OMiðρÞ�, we can obtain the target statistics as
Tr½ONðρÞ� ¼ P

iciTr½OMiðρÞ�. Thus, compared with having access to N
and directly measuring O, the classical simulation introduces an extra
sampling overhead with a multiplicative factor k c k21 ¼ P

i jci j
� �2

. In
particular, suppose we aim to estimate Tr½ONðρÞ� to an additive error ε
with failure probability δ. Due to Hoeffding’s inequality27, when having
access to N we need T0∝ 1/ε2log(δ−1) samples to achieve this estimate to
desired precision, and when only having access to free resources in a
specific decomposition N ¼ P

iciMi , we need T / k c k21=ε2logðδ�1Þ
samples. The simulation overhead is thus given by k c k21 / T=T0.
By minimising the simulation overhead over all possible expansions, we

obtain the optimal simulation cost

CminðN Þ ¼ min
N ¼

P
i
ciMi

Cðfci ;MigÞ: (16)

Our second result shows that this optimal cost is quantified by the
robustness measure.
Formal statement of Theorem 2. For any quantum channel N , the

optimal cost for the observational simulation of N using EB channels is
given by

CminðN Þ ¼ ð1 þ 2RðN ÞÞ2: (17)

Proof For any linear expansion N ¼ P
iciMi , denote the positive and

negative coefficients of ci by cþi and c�i , respectively. Then we have

N ¼
X
i:ci � 0

jcþi jMi �
X
i:ci < 0

jc�i jMi ; Mi 2 EB; (18)

with k c k¼ P
i:ci � 0jcþi j þ

P
i:ci < 0jc�i j. As the channel is trace preserving,

taking trace on both sides we get
P

i:ci � 0jcþi j �
P

i:ci < 0jc�i j ¼ 1. Denote
s ¼ P

i:ci < 0jc�i j, hence with ∥c∥1= 2s+ 1, M ¼ P
i:ci < 0jc�i jMi=s, and

M0 ¼ P
i:ci � 0jcþi jMi=ð1 þ sÞ, we have

N ¼ ðs þ 1ÞM0 � sM; (19)

where by convexity of EB, we have M;M0 2 EB. Therefore finding the
optimal expansion is equivalent to finding the smallest s such that Eq. (19)
holds, which by definition equals to the robustness, i.e. smin ¼ RðNÞ.
Then we conclude that CminðN Þ ¼ ð1 þ 2RðNÞÞ2.

Non-local games
Consider a quantum game G defined by the tuple G ¼ ðfαijg; fσig; fOjgÞ,
where σi are input states, {Oj} is a positive observable valued measures at
the output, and αi 2 R are the coefficients which define the particular
game. The maximal performance in the game G enabled by a channel N is
quantified by the payoff function PðN ;GÞ ¼ P

ijαijTr½OjNðσiÞ�. Theorem 3
establishes the connection between the advantage of a quantum channel
in the game scenario over all EB channels and the robustness measure. To
ensure that the optimisation problem is well-defined and bounded, we will
optimise over games which give a non-negative payoff for classical
memories, which include standard state discrimination tasks.
Formal statement of Theorem 3. Let G0 denote games such that all EB

channels achieve a non-negative payoff, that is,

PðM;G0Þ � 0 8M 2 EB: (20)

Then the maximal advantage of a quantum channel N over all EB
channels, maximised over all such games, is given by the robustness:

max
G0

PðN ;G0Þ
max
M2EB

PðM;G0Þ ¼ 1þRðN Þ: (21)

Proof The proof is based on duality in conic optimisation (see ref. 17 and
references there in). First we write the robustness as an optimisation
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problem

RðNÞ þ 1 ¼ min Tr½x1�
s:t: x1 � x2 ¼ ΦN ;

x1; x2 2 coneðChoiðEBÞÞ;
(22)

where ΦN is the Choi state of N , Choi(EB) denotes the Choi states of EB
channels, i.e. bipartite separable Choi states, and cone(⋅) represents the
unnormalised version. This can be written in the standard form of conic
programming, based on which we can write the dual form of this
optimisation problem. The dual form can be simplified as

OPT ¼ max Tr½ΦNW�
s:t: W ¼ Wy;

Tr½ΦM0W� 2 ½0; 1�; 8M0 2 EB:

(23)

We can verify that these primal and dual forms satisfy the condition for
strong duality, therefore OPT ¼ 1þRðN Þ, and it remains to show that
OPT equals the maximal advantage in games.
As the constraints in the dual form (Eq. (23)) are linear, without loss of

generality, we can rescale the optimisation so that we only need to
consider games G0 that satisfy

PðM;G0Þ 2 ½0; 1� (24)

for any M 2 EB. We can then write

PðN ;G0Þ ¼ P
i;j
αijTr½OjNðσiÞ�;

¼ d
P
i;j
αijTr½ΦN ðσTi � OjÞ�;

:¼ Tr½ΦNW�;

(25)

where d is the input dimension of N and W ¼ d
P

i;jαijσ
T
i � Oj . Using this

representation, the maximal advantage can be written as an optimisation
problem equivalent to (23). In particular, since any Hermitian matrix can be
expressed in the form of W for some real coefficients {αij}, any witness W in
(23) can be used to construct a corresponding game G0 , and conversely any
game G0 satisfying the optimisation constraints gives rise to a valid witness
W in (23). We thus have

max
G0

PðN ;G0Þ ¼ 1 þ RðNÞ; (26)

concluding the proof.

Computability and bounds
It is known that the description of the set of separable states is NP-hard in
the dimension of the system58, and indeed this property extends to the set
of EB channels59, making it intractable to describe in general. Nonetheless,
we can solve the problem of quantifying the RQM in relevant cases, as well
as establish universally applicable bounds. As described in the main text,
suitably constructing non-local games G can provide such lower bounds,
which can indeed be tight. More generally, one can employ the positive
partial transpose criterion60 to provide an efficiently computable semi-
definite programming relaxation of the problem, often providing non-
trivial and useful bounds on the value of the RQM. We leave a detailed
discussion of these methods to the Supplementary Notes. In the case of
low-dimensional channels, which is of particular relevance in many near-
term technological applications, we can go further than numerical bounds
and establish an analytical description of the RQM.
Formal statement of Theorem 4. For any channelN with input dimension

dA and output dimension dB, its RQM satisfies

RðN Þ � maxf0; dA maxeig ðΦN Þ � 1g; (27)

and equality holds when dA ≤ 3 and dB= 2.
Proof The idea behind the proof is to employ the reduction criterion for

separability61,62, which can be used to show that any EB channel M : A ! B
satisfies ΦM 	 1

dA
IAB . Therefore, the set of channels satisfying this criterion

provides a relaxation of the set of EB channels, and we can define a bound on
the RQM by computing the minimal robustness with respect to this set. A
suitable decomposition of a channelN can then be used to show that, in fact,
this bound is given exactly by the larger of dA max eig ðΦN Þ � 1 and 0. In the
case of dA≤ 3 and dB= 2, the reduction criterion is also a sufficient condition
for separability, which ensures that the robustness RðN Þ matches the
lower bound.

Experiment details
The processor has five qubits with T1 and T2 ranging from 25 to 110 μs,
single-qubit gate error 3.3–6.5 × 10−4, two-qubit gate error 1.0–1.5 × 10−2,
and read-out error 1.9–4.5 × 10−2. Our experiments are run on the first
three qubits, which have the highest gate fidelities, and the circuits are
implemented with Qiskit63.
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